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MATHEMATICAL LOGIC AND THE FOUNDATIONS OF MATHEMATICS 

/This is a translation of an article written by 
S. A» Yanovskaya * in Matematik v SSSR za Sorok Let 
(Mathematics in the USSR in Forty Years), Vol 1, Moscow, 
1959, pp 13~120.;7 

Introduction 

The works of Soviet scientists on problems of mathe- 
matical logic and fundamentals of mathematics during 1917 — 
194-7 were already covered in the collection "Mathematics in 
the USSR During Thirty Years." It is therefore necessary 
for us to dwell here only on a brief survey of the works 
performed during the past ten years. However, during the 
ten years elapsed from the time of the publication of the 
collection "Mathematics in the USSR in Thirty Years," the 
staffs of Soviet scientists, working creatively on problems 
of mathematical logic, have grown so much, that it is hardly 
possible to give in a brief survey article enough informa- 
tion concerning the works performed and the results obtained, 

1. The work on mathematical logic is being carried 
out in this country in many scientific research seminars 
and institutes of the Academy of Sciences USSR, the univer- 
sities, and the pedagogical institutes. The Mathematical 
Institute imeni V. A. Steklov of the Academy of Sciences, 
USSR has included since 1957 a special division for mathe- 
matical logic, headed by P. S. Novikov. 

In Moscow and in Leningrad there have grown large 
schools of specialists on mathematical logic, including many 
of the students of P. S. Novikov, A. A. Markov, and 

1. The article was written with the participation of S, I. 
Adyan, Z. I. Kozlova, A. V. Kuznetsov, A. A. Lyapunov, and 
V. A. Uspenskiy. 



A. N. Kolmogorov« But the work on mathematical logic pro- 
ceeds now in Riga, in Ivanovo, in Penza, in Gor'kiy, and in 
other cities of the Soviet Union. Participating more and 
more in the work on mathematical logic and its application 
are also representatives of other sciences:   scientific 
workers in the field of technical sciences, linguists, 
philosophers, and others. Papers onimathematical logic 
became frequent at the sessions of the Moscow Mathematical 
Society and the Leningrad All-City Seminar, lectures on 
mathematical logic and associated disciplines are systemati- 
cally delivered at many faculties of the Moscow and Leningrad 
Universities. At the Moscow University during recent years 
there have "been carried out special seminars also on indi- 
vidual problems on mathematical logic, such as the theory of 
computable functions, algebraic logic and its multiple- 
valued generalizations, technical applications of mathema- 
tical logic, mathematical logic, and linguistics and many 
others.  Special seminars on general-logical applications of 
mathematical logic have been systematically in operation at. 
the Institute of Philosophy at the Academy of Sciences USSR, 
and on the philosophical faculty of the Moscow University. 
In the Moscow and Leningrad Universities, P. S. Novikov, A. 
A. Markov, and N. A. Shanin have read many new courses, as 
follows; on the fundamentals of mathematics (P. S. Novikov 
and A. A. Markov), on the theory of algorithms (A. A. Markov), 
on constructive mathematical logic (P. S. Novikov, A.'A.. 
Markov and N. A. Shanin), on constructive mathematical ana- 
lysis (N. A. Shanin).  (Certain results, first detailed in 
these courses, will be treated later on.) Many special 
courses have been delivered also by A. V. Kuznetsov, V. A. 
Uspenskiy, S. V. Yablonskiy, and S. A. Yanovskaya. 

A great role in the matter of the development of ma- 
thematical logic in the USSR and exchange of experience in 
this scientific region with other countries have been played 
also by suchjfactors as^ the founding of the abstract journal 
Matematika /Mathematics/, which systematically reports on 
work in mathematical logic both in this country as well as 
abroad; the expansion of contacts with specialists on mathe- 
matical logic abroad, particularly in the countries of the 
Peoples' Democracies; the gathering of the Third Ail-Union 



Mathematical Congress with a section on mathematical logic, 
in which approximately 50 papers were delivered. Of great 
importance was the publication of several original and trans- 
lated books on mathematical logics and mathematics, inolud- 

. ing the basic Work byjl. A. Markov »Teoriya algorifmov1» 
,/Theory of Algorithms/ (1954)» the monographs by P. S. 
Novikov "Ob algoritmieheskoy nerazreshimosti problemy 
tozhdestva slov v teorii grupp" ^Ofi the Algorithmic Insolu- 
bility of the Problem of Identity of Words in Theory of 
Groups/* (1955), and N. A._Shanin's :,0 nekotorykh logicheskikh 
problemakh arifmeticki" /On  Certain Logical Problems of 
Arithmetic? (1955), the translation of several known hand- 
books on mathematical logic and mathematics by D. Hilbert 
and W. Ackerman (•'Fundament als of Theoretical Logic," 
Moscow, Foreign Literature Press, 1947), by A. Tarski 
("Introduction to Logic and Methodology of Deductive 
Sciences51)» Moscow, Foreign Literature Press, 1948), S. C. 
Kleene ("Introduction of Meta-mathematics," Moscow, Foreign 
Literature Press, 1957), and the translation of the mono- 
graph by R. Peter (''Recursive Functions,''1 Moscow, Foreign 
Literature Press, 1954). As a rule, the translations are 
provided in our country with remarks, commentaries, supple- 
ments, and forewords, which reflect the work performed on 
the book by the editor and the translator. Thus, the fore- 
word to the book by R. Peter was written by the editor of 
the translation, A. N. Kolmogorov. 

•2, Heretofore, the basic interests of the Soviet 
specialists on mathematical logic are concentrated around 
the difficult problems of mathematics and its foundations; 
our specialists are glad to engage also in problems of mathe- 
matical logic, which arise in other sciences, above all in 
connection with the construction of automatic machines, 
including complicated information machines, which propose 
the development of various problems not only in engineering, 
but also in mathematical linguistics. 

In order to solve a problem to prove a theorem, to 
find a general method (algorithm) for an effective solution 
of an entire class of homogeneous problems, to reduce the 
solution of one problem to the solution of another (or others) 
the mathematician does not have usually to think much on what 



in general is meant by "solve a problem1' "prove a theorem," 
what is a "mass problem" or the "algorithm" that solves it, 
what is meant by "reduction of one problem to another (or 
others)?11 But all these problems occur unavoidably when the 
problem refuses to be solved stubbornly, when the theorem 
can neither be proved nor disproved* when the algorithm can- 
not be found. It is in these problems that mathematical 
logic engages and particularly its principal branch, meta- 
mathematics, a science whose object'are mathematical theories 
and problems. But in order for us to-be' able to use the 
solution of these problems in mathematics, meta-mathematics 
must be constructive: it should above all bear itself an 
exact mathematical character. As has been shown in the 
development of modern mathematical logic, such a statement 
of the problem presupposes a special study of constructive 
objects and methods of mathematics, their role and signifi- 
cances in all of mathematics, including the mathematics that 
operates with non-constructive objects or using such (non- 
constructive) means as the use of law of excluded third in 
discussions of multiple-sets. These types of problems are 
reflected above all in the theory of algorithms (absolute 
and so-called reducibility algorithms, which solve each of 
a certain class of homogeneous problems only under the con- 
dition that there exists additional information, the obtain- 
ing of which no longer has, generally speaking, an slogirth- 
mic character). 

Also belonging to the theory of algorithms of both 
kinds and to the theory of computable (recursive) functions 
and operators, the generalizations of which permit us to 
cope already also with the struoture of non-constructive 
objects of mathematics, and enable us to give a classifica- 
tion for broad classes of sets, functions, predicates, and 
other objects of mathematics and meta-mathematics, to clarify 
the limits of capabilities of their constructivization, 
their role in the solution of problems of mathematics, and 
its justifications. The contribution of Soviet mathemati- 
cians to this circle of problems is treated in the central 
(second) chapter of our survey, devoted to the theory of 
algorithms and computable functions and operators. 

The differences in the points of view on the problem 



of the meaning of non-constructive objects and methods of 
mathematics .of the "Moscow" School of students and succes- 
sors of F. S. Novikov and A* I. Kolmogorov and the "Lenin- 
grad i! School of students of A. A. Markov expresses itself 
already in this chapter of ihe survey. fhe  authors have 
tried to expound as Objectively as possible material per** 
tainihg to problems still under discussion. Naturally, 
however, the point of view which they consider the broadest 
and most convincing and which consists of including in their 
work not only constructive but also classical methods in 
mathematics and mathematical logic, has found its reflec- 
tion in the formulation of this article and in the treatment 
of the material. 

3. 'Dhe third chapter of the survey is devoted to 
applications of the theory of algorithms both to proofs of 
the insolubility of several central algorithmic problems of 
algebra and topology (the corresponding section 9 was writ- 
ten in its entirety by S. I. Adyan), and to problems of cons- 
tructivization of mathematics, particularly of mathematical 
analysis, which are considered in themselves both from the 
constructive (after A. A. Markov) and from the classical 
point of view. 

The object of the fourth chapter is logical and 
logical-mathematical calculations, which are considered also 
above all in light of theory of algoriths. A particular 
place is occupied in this chapter by the section devoted to 
the algebraic logic (Section 13, written by A. V. Kuznetsov). 
The origin of the problematics discussed in this section is 
connected to a considerable extent with problems which arise 
in engineering, with problems of analysis and synthesis of 
relay systems and other automatic devices, with the problem 
of the minimization of the number of contacts in the circuit, 
with the problem of programming, etc.  It was intended ini- 
tially to include in this survey the entire general circle 
of problems, connected with technical applications of mathe- 
matical logic. However, since the corresponding literature 
is treated in the survey of papers on cybernetics, we have 
resolved to forego its discussion in the present survey. 
We note merely that from the point of view of connection 
with mathematical logic one must Consider above all the 



papers by M. A. Gavrilov, A. V. Kuznetsov, 0. B. Lupanov, 
A. G. Lunts, A. A. Markov, G. N. Povarov, V. N. Roginskiy, 
B. N, Trakhtenbrot. B. I. Shestakov, and S. V. Yablonskiy, 
on which WG shall dwell partially in Section 13, devoted. 
to algebraic logic and its multiple-valued generalizations. 

from among the other applications of mathematical 
logic, a particular place is occupied by applications to 
linguistics. On these,, and also on-certain other problems, 
which are not reflected in the principal part of the survey, 
we shall dwell in the small concluding section. 

4. Problems traditionally included in courses on 
the foundations of mathematics and which essentially do not 
presuppose as yet the theory of algorithms, have been rele- 
gated by us to the first section of the survey. Here we 
report on papers by Soviet authors, devoted to axiomatic 
theory of sets (proofs of non-contradiction of certain hypo- 
thesis of descriptive set theory; proof of the incompleteness 
of a wide mass of axiomatic theories of set, based on the 
existence in them of unprovable means of premises concerning 
the equivalents of definitions of a finite set; problem of 
antinomies of set theory, etc.). 

The second section, written by A. A. Lyapunov and 
Z. I. ICozlova represents an independent survey, devoted to 
problems on descriptive theory of sets. Its inclusion in 
the survey on work on mathematical logic and fundamentals 
of mathematics is explained by the fact that in the works of 
the representatives of the Moscow school of mathematical 
logic, the methods of descriptive theory ofsets play a par- 
ticular role.  The analogies of descriptive classifications 
of sets and functions are used in classification of ''arith- 
metic' sets, functions, predicates, transfinites, and other 
objects (Section 8, written with participation of A. V. 
Kuznetsov). Topological properties of Baire. space make it 
possible to cope with the structure of constructive mathema- 
tical analysis and constructive logic (Sections 10 and 12). 
They play a substantial role in the solution of difficult 
problems, pertaining to the problems of reducibility. 
(Sections 6 and 7). 

5. We already mentioned the discussions between the 
representative of the constructive and classical trends among 



the Soviet specialists in mathematical logic* One must note 
however, that these arguments are carried out against a com- 
mon background of dialectic materialism, do that both the 
"constructivists" and the "classicists" are decisively fight- 

■ ing against idealistic misinterpretations of mathematical 
logic. For illustrations, we give here two examples* The 
first is borrowed from1 the foreword by A. H. Komogorotf to 
the book by R. Peter "Recursive Junctions." A. H. Kolmogo- 
röv comes out here against the agnostic "deductions" from 
proofs of insolubility of a certain mass (algorithmic) prob- 
lem. The essence of the matter lies even not only in the 
fact that one proves this way only the non-existence of a 
single method, with which one could solve any of a certain 
infinite class of problems, but above all in that such 
proofs have positive cognitive meaning. Thus, "it is easy 
to show that from the algorithmic unsolvability of the Fermat 
problem in the sense of R. Peter there follows a negative 
solution of the general Permat problem" (p. 9). Here A. H. 
Kolmogorov emphasizes that although the constructive trend 
in mathematics makes wide use of the constructive results 
obtained in the "intuitionistic" school founded by Brouwer, 
but actually the positive accomplishments of the constructive 
trend have no relation • hatever to the philosophy of intui- 
tionism." He therefore considers it necessary to note par- 
ticularly that the "use of intuitionism or the terms "intui- 
tionistic logic" and "intuitionistic arithmetic" as "techni- 
cal terms" on the part of many authors who are far from the 
philosophy of intuitionism, leads to great confusion and 
should be recognized as being false (p. 9). 

N. A. Shanin, the logical-mathematical research of 
whom are devoted to the development of problems of the cons- 
tructive trend in mathematics, also writes on the same sub- 
ject. In his paper "On Certain Logical Problems of Arithme- 

- tic" we read:  "The constructive trend in mathematics began 
to take form at the beginning of the present century and at 
the initial stages of its development it was connected with 
the philosophical current in mathematics, called intuition- 
ism. One must emphasize that the methodological premises 
of intuitionism are highly inconsistent. It is enough to 
indicate for example that the founders of intuitionism, 



Brouwer and H. v/eyle, consider the concept of natural number 
not as a reöult of the abstracting work of human thought, 
which processes the rich social experience of operation with 
various groups of objects, but as a manifestation of "ini- 
tial intuition;" However, further progress in science has 
proved convincingly that the real contents of constructive 
trend in mathematics is no way connected with the methodo- 
logical premises of intuitionism, and .is caused by specific 
mathematical problems of a special ijype, the investigation 
of which is of considerable interest both for mathematics 
itself, as well as for its applications. ' The development 
of mathematics has exhibited the need for all out investi- 
gation of various processes of construction and of potential- 
ly realizable results of the development of such processes. 
It is indeed the problems of this character that make up 
the scope and methods of the constructive trend in mathe- 
matics" (p. 4). 

6. Inasmuch as the present survey is primarily of 
summary character, the authors naturally did not pretend 
to a sufficiently complete exposition of the contents of the 
papers reviewed. Me  attempted merely to give the reader 
a certain — albeit rought — idea on the problems studied 
in them and on the results obtained. Most frequently we 
used in this case the terminology and symbols of the author 
of the paper. If sufficiently widely used terms or symbols 
were referred to, we did not stop to explain them. In many 
cases we did not warn against the incomplete rigor of our 
formulations. 

Many results elucidated in the present paper were 
reported and proved in all the details only at the sessions 
of the Scientific-Research seminars, the minutes of which 
we had to use Consequently« At the Moscow university such 
minute's are kept in detail and reliably since Pall of 194-6 
by the Secretary of the Seminar on Mathematical Logic. A. V, 
Kuznetsov, whose materials were extensively used in the 
present survey. Unfortunately, the authors did not always 
have at their disposal the corresponding materials on other 
seminars, particularly on the seminar of the Leningrad 
Division of the Mathematical Institute of the Academy of 

8 



Sciences USSR. 
For consultation and aid in writing this survey, I 

consider it my duty to thank particularly A. V* Kuzhetsov 
and V. A. Uspenskiy. 

1, Note added in proof. A collection of works of the 
Leningrad Seminar was published in 1958 in the 52nd volume 
of the works of the Mathematical Institute imeni 7» A. 
Steklov. 



Chapter I 

- CERTAIN PROBLEMS OF SET THEORY 

I* Axiomatic Set Theories 

1. As is known, the difficulty connected with the 
basics of the set theory cannot be overcome with the aid of 
formulating it in the form of a sufficiently deductive form 
of theory, based on the choice of a certain system of axioms 
and finite rules of deduction. Even if one disregards the 
principal incompleteness of these theories (the i:Goedel 
Theorem") the non-contradiction of such a theory T   by 
virtue of the second Goedel theorem — cannot be proved by 
means of this theory itself (the T theory); such a proof 
presupposes the existence of another theory of sets T0, which 
is sufficiently strong to be able to carry out in it the 
proof of the non-contradiction of the first theorem, which 
at the same time is non-contradictive. Thus, it is difficult 
to count on a proof of non-contradiction for any axiomatic 
set theory. It is also known that for all existing axiomatic 
systems of set theory, the rules of deduction of which are 
formalized in the narrow calculus of predicates and in which 
one can prove the existence of non-denumerable sets, we come 
up against the so-called Skolem paradox, according to which 
there follows from the assumption of the feasibility of such 
a system also its feasibility in the denumerable model (i.e., 
the image of a set, which is non-denumerable inside a given 
axiomatic system, is found to be a certain subset of a denu- 
merable model of this system). It is therefore natural to 
consider proofs of non-denumerability, carried out within 
elementary (i.e., formalized by means of narrow calculus of 
predicates) of axiomatic systems of set theory, only as 
proofs of the relative non-denumerability, leaving the prob- 
lem of the existence of absolutely non-denumerable sets open. 

Neverthelsss, difficulties of this kind do not deprive 
the axiomatic constructions of set theory of scientific 
interest.  It is enough to note that with their aid it is 
possible to throw light on many difficult problems in the 
theory of sets by proving relative non-contradiction, such, 

10 



for example, as the known theorems of Goedel on the non- 
contradiction of the continuum-hypothesis and axioms of 
selection,        •' .'' 

From the works of Soviet mathematicians, it is -ne- 
cessary to note in_this connection above all the results 
of P. S. Novikov / 25./1 pertaining to the following prin- 
cipal problems of descriptive theory of sets: 

1) Problem of the cardinality of a complement to 
the A-set. 

2) Problems of measurability of projections of 
complements to an A-set. 

3) Problem of separability of the protective sets 
of higher classes. 

2?he first two of theses problems were posed already 
in 1930 by IT. N. Luzin £ soj  (see also P. S. Novikov 
L  25_/, p. 279) who expressed concerning them an opinion 
that they are of the same nature as the problems of the 
continuum, i.e., that their difficulty is due not to a 
shortage of means of construction or derivation at the 
disposal of the mathematicians, but the fact there are 
not enough generally-accepted premises of set theory for 
the deduction of an answer of these problems from these. 

But in order that judgment of this kind acquire an 
exact meaning, it is necessary to knov; what is really 
meant by "generally accepted premises of set theory," and 
to indicate methods that permit, in spite of the limited 
possibility, to deduct consequences from these premises, . 
and to become convinced that among these consequences one 
cannot find an answer to the raised questions.  In other 
words, it is necessary to resort to a "formalized" axioma- 
tic construction of theory of sets, if possible a -stronger 
one. Such are the well known system of Goedel, which is 
sufficiently strong to enable one to realize in it all the 
conclusions that are usually obtained in the existing set 
theory. By means of his system (called by him the 
system) Goedel showed that the generalised continuum 

hypothesis 2Nco  ~      ta. + -t 

does not contradict the system of the axioms of the theory 
of sets (system £ ) ,v if this system itself is not contra- 
dictory. _ In another paper (see Symbolic Logic, Vol. 116) 
Goedel published without proof the following statement: 

11 



If a system of Neumann axioms for set theory is 
non-contradictory, then it remains non-contradictory also 
after joining to it two new axioms, which establish the 
existence of such complements to the analytic sets, which 
have the cardinality of a continuum, but do not contain a 
perfect subset, and such linear B? sets, which are not 
measurable in the sense of Lebesgue. 

The proof of this statement still does not resolve 
completely the question raised by N. H. Luzin concerning 
non-derivability. However, it represents a considerable 
step forward towards the solution of the problem and in 
general, towards foundation of set theory* P. S. Novikov 
2~25_/* was first to publish the proof of the non-contra- 
diction (in the B system) of both premises: 

a) Concerning the existence' of a non-denumerable 
complement to the A~set, containing no perfect subset. 

b) The existence of a set of type B-, which is not 
measurable in the sense of Lebesgue. 

(The proof of K, Goedel has thus far not been 
published. ..„.•«. 

In addition to that, P. S. Novikov £  25_/ estab- 
lished non-contradiction (in theJJ system of axioms of 
set theory) of the 'following statement concerning the 
laws of separability of protective sets of higher classes: 
starting with a certain n, the laws of separability for 

1. "The exceeding importance of this problem is caused by 
the fact that if its solution is negative, then the famous 
problem of continuum is solved affirmatively"(N. N. Luzin, 
Z 90_7, p. 288). 
2. "The author considers as unresolved the problem of whe- 
ther all the protective sets are measurable (in the sense 
of Lebesgue) or not" '(N. H. Luzin I Wj,  p. 321). After 
the proved non-contradiction of the statement concerning 
the existence, as proved by P. S. Novikov, of a protective 
set which is not measurable in the sense of Lebesgue, it 
becomes necessary, in order to prove the non-solvability 
(in the £! system) of the problem raised by N. H. Luzin, 
to prove also the non-contradiction (in the ^   "system) of 
the system that all *the projective sets are measurable in 
the sense of Lebesgue. 

12 



sets A (protective sets of class n) is the same as in the 
second class, but not the same as in the first class of 
protective sets). (The inverse character of the laws of 
separability for protective sets of second class relative 
to those established by .N. N. Lusin £  90j7, p. 155, 206 
to the laws of separability__for the class of A sets was 
observed by P. 3. Novikov £~Qt  10_/_

in 1935. More accu- 
rate formulations can be found in £~25j,  p. 280, and in 
the remarks of £  90j7, pp. 355 — 356.) 

The proofs of'P. 3. Novikov are based on the fact 
that in the JJ system it is possible to separate a Baire 
space J (respectively Jn) the points of which correspond 
to real numbers (respectively aggregates of n real num- 
bers), and to develop the ordinary descriptive theory of 
sets in the Bäire space. ■ These proofs have the geometric 
character that is characteristic of the Luzin school, and 
consists of observing that in the A model of the & . sys- 
tem, in which all sets are constructive in a definite' ' 
sense, statements (a) and (b) are true.  If the E  sys- 
tem is non-contradictory, then part of its A is also. 
non-contradictory, and therefore the statements (a) and 
(b) which.are proved in  H are also non-contradictory 
in A  (and also the statement (c):  concerning the exis- 
tence of the function defined in all points of Baire 
space, belonging to class A? and discontinuous on  each 
perfect set).  Premise (c) -- the non-refutability of 
which follows from its provability in the A model, is 
also of independent interest — is used to prove premises 
(a) and (b) in the.-A  model. The proof of the results, 
pertaining to problems of separability of protective sets 
of higher classes, has as yet not been published, although 
it has been discussed in all its details by P. S. Uovikov 
at many sessions of the Seminar on Mathematical Logic at 
the Moscow University as early as 1950. • 

2.  The ideas and methods of P. S. Novikov were 
extensively used and developed in the work of his stu- 
dents and participants of the Seminar on Mathematical 
Logic at the Moscow University. V/e shall encounter these 
methods in Section 10, where ve speak of constructive ma- 
thematical analysis, and also in Sections 6 and 7, devoted 
to the algorithms of reducibility or corresponding prob- 
lems of computable operators.  We shall also encounter 
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them in Section 12, when speaking of the connection of 
the Goedel theforem concerning the incompleteness (and non- 
complementarity) of the formalized arithmetic (and also 
theorems on the non-solvability of problems of solvability 
on finite classes) with problems of'non-separability,!and 
in many other cases. Here we shall dwell briefly only on 
the results of B. S. Sodnomov £  4, ij who directly conti- 
nued the problematics of the paper by P. S. Novikov £  25jt 

Using the_trigonometric methods of P. S. Novikov, 
B. 8. Sodnomov £ 4-J? has shown that if a system £ is non- • 
contradictory also after joining to it the axiom which 
states that if ("S)  is a family of subsets in the interval 
(0, 1) such that there exists for it a universal protective 
set A of class a.    , then among .the sets constructed by 
applying the axiom of selection to the system {ß}  , there 
exists a protective set of class not higher than 
O, *,)+ £ ,y By way of consequences of this theory, 
B. S. Sodnomov obtains proofs of the non-contradiction 
(relative to the £ system) of the following statements:■ 

(a) Among the sets that are not measurable in the 
sense of Lebesgue, obtained by a choice of one point each 
in one system of rationalities (the Van der Warden example), 
there exists a protective set of class not higher than 
third. 

(b) The well-known Hausdorf breakdown of a sphere 
can be realized and protective sets of not higher than 
third class.     .-.«.■'_■ 

Later on (see / 7_/) B. 8. Sodnomov has increased 
considerably the number of such results, pertaining to the 
non-contradiction of projectivity of certain remarkable 
sets and to an upper limit of their classes, leaning here 
on a study of the role of the operation of arithmetic 
addition (term by term addition) of two sets of real num- 
bers and formation of sets that are not measurable" in the 
sense of Lebesgue. 

1. An analogous result— without an exact estimate of the 
class of projectivity — was obtained earlier by Kuratowski 
by mathematical-logic methods (see G. Kuratowski, Ensembles 
projectifs et ensembles singulaires, Pund. Math.  35» 
(1948), 1931-140). 

14 



3. A series of results on the axiomatics of the 
theory of sets was obtained by A. S. Yesenin-Vol'pin. He 
considers a system of axioms 6 , the principal concepts 
of which are: object, class, relation of belonging, -which 
can take place only between the object and class.  The 
classes that are objects are called sets. 

Axioms: analogous to the axioms of the £ system 
of the work of Goedelon the continuum hypothesis: axiom 
Al of Goedel, that any set is a class, is replaced by an 
axiom that the element is always an object. 

Besults: 
1) Non-contradiction of the statement of the 

existence of an infinite set, between the cardinality of 
which and the cardinality of the set of its subsets there 
are intermediate cardinalities (this was proved on 29' 
June 1951 and published in 1956  ), 

2) The non-£royability of the Suslin hypothesis 
in the system 0 / ^J.     (The Suslin hypothesis is that 
in a continuously ordered set, any system of paired non- 
intersecting intervals of which is not more than denume- 
rable, must have a denumerable dense subset). 

It .is important to emphasize that in both these 
cases one deals with non-provability in a system of 
axioms, which does not contain a selection axiom.  The 
proof consists of constructing a model, in which there is 
a set x such that between the cardinalities of the sets x 
and P (x) (the set of all subsets of set x) there is a set 
of intermediate cardinality, and also a model in which 
there takes place the negation of the Suslin hypothesis; 
on the other, the selection axiom does not take place in 
these models, thus making this axiom independent. 

The latter result — the independence of the selec- 
tion axiom — was obtained-by Mostowski as early as in 
1938 or 1939.  The work of A. 3. Yesenin-Vol'pin * was 
carried out independently of the work of Mostowski and 
does not contain the additional theorem (published in 
1954 / 3_/) that if a class satisfies certain five condi- 
tions, it can be used for the construction of a model; 
the Goedel model (. & model), that of Mostowski, and that 
of Yesenin-Yol'pin are constructed by the latter on the 

1. A. 3. Yesenin-Vol'pin. Review of the book by. Bachmann 
"Transfinite Numbers. Novyye knigi zg  rubezhom Aew Books 
Abroad/ 7, 1956  '—~~~ 
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basis of this theorem, the proof of which, is given by the 
Goedel method, , This theorem has made if possible for the 
Hungarian mathematician Hajnal to prove that if the 
hypothesis  2Ä*«=K«+*+T+i is nönTeontradiotory, 

then 

the hypothesis ^.==j>?.+)+lÄ(t)(8>a +? + 1~, jP..^, 

is also non-contradictory, so that, for example, If 
^■»K» is non-contradictory,- then 2"* »Mr is 

also non contradictory, and from the provability of 
'^^Si in the '$' STStem with the selection axiom 

then follows the probability of the continuum hypothesis 
in the same system'(Andras Hajnal, Acta Scientarum). 

These results are true also for the system "A, B, 
C" which results from the    system by removing the 
"consolidation" axiom "D".   As regards the latter, A. 3. 
Yesenin-Vol'pin has proved that it is possible in its 
formulation to use instead of-the quantor by classes an 
analogous quant or by sets (Z~3_/» footnote on p. 10), so 
that, for example, in the Zermello-Frenkel system it is 
possible to formulate the consolidation axiom in the form 
of a single axiom, and not a scheme of axioms, as was done 
by Mostowski (Fund. Math.  1950, 111 — 124). 

In 1951 A. 3. Yesenin-Vol'pin investigated also the 
problem of what models for set theory can be constructed 
by means of the 8 system (or  £ system — in £  3_/ the 
model for 8 with infinite set of objects-nonclasses was 
constructed by means of the  I system).  In the same year 
Sheperdson (England) published the first part of an analo- 
gous investigation, while the second and third part ap- 
peared in 1952 and 1953. Among the other results of 
Sheperdson he shows that by means of the system it is im- 
possible to construct a "standard model" for the H  system, 
in which the Goedel axiom of constructivity would be viola- 
ted (from which, in particular, there follows the selection 
axiom and 2No. —Wi+i ) 5 "the term "standard model" denotes 
here a model, forms if it is considered in the initial 
system (with which means one constructs this model), a 

l~.     The result of the independence of the selection axiom 
in the system "A, B,*C" was also obtained by Mendelson 
(1955) and Speaker (1957) Zeitschr. math. Logik u. Gruadl. 
Math. 3, (1957)). 
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class that is fully ordered in type of a certain ordinal 
(i.e., the ordinal number of class of all ordinal numbers). 
Sheperdsoh considers the "A, B, C," system described above. 
Independent of him, A. o. Yesenin-Vol'pin obtained an ana- 
logous result for the © system, to which an axiom is 
added concerning the complete ordering of the class of all 
individuums (i.e., objective-nonclasses), A particular 
case of such a system as the "A, B, -C" system".  (This 
result was formulated by A. S. Yesenin-Vol'pin at the end 
of his survey."*) 

i?rom among the separate results pertaining to the 
Goedel system we note also the dependence observed by 
A. A. Markov £  37'J  of one of the axioms of this system, 
namely the axiom B6 (which states, that for any class A 
there exists a class B, in which the ordered pair 
enters if and only if the pair <$X>   enters in A), on 
the remaining axioms of this system (namelv axioms A4, 
B5, B8, B4). 

4.  One of the principal obstacles along the.path 
of an axiomatic basis of set theory is the deductive in- 
completeness (and.incompletability) of all ordinary (ele- 
mentary) axiomatic systems of set. theory, discovered by 
Goedel and formulated in his famous theorem (reinforced 
by rosser and others). *  Concerning the connection'of 
this incompleteness with the effective non-separability 
of the set of proved from the set of refuted formulas of 
such theories we shall speak later (in connection with the 
works of A. V. Uspenskiy. and B. A. Trakhtenbröt) in Sec- 
tion 12. Here we note only that the incompleteness proof, 
based on the concept 'of recursive non-separability, proposed 
by B. A. Trakhtenbröt^* / 1,11_/ makes it possible to 

1. A. S. Yesenin Vol'pin,1 Review of the article by Shepherd- 
son "Internal Models for Set Theory III" (Journal of Symbolic 
Logic, 18:2 (1953), 145 — 167), published in Referat Zhur 
Katematika 3, 1954), Abstract No. 2491. 
2. A more accurate formulation of the Goedel theorem can 
be seen, for example, in the article by B. A. Trakhtenbröt 
Z 2_/» Section 42.• 
3. B. A. Trakhtenbröt.  The problem of solvability of fi- 
nite classes a definition of a finite set. Author's ab- 
stract of dissertation, Kiev, 1950. 
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exhibit the existence» in all (elementary) axiomatic 
set theories, of unsolvable premises concerning the equi- 
valence of two definitions of finiteness of a set.  Since 
this gave the final answer to the long-posed question-of 
theory of finite sets, we shall dwell on this result by 
B. A. Trakhtenbrot in somewhat greater detail« 

The best known of all the definitions of finiteness 
(or respectively infiniteness) of-a set is the definition 
given by Dedekind for a finite-set as not equivalent to 
any of its regular subsets. Other authors (Zermelo, 
Russell anä Whitehead, Tarski, Neumann, Weber-Stoekel, and 
others) proposed a series of different definitions (thus, 
for example, the definition of Weber-Stoekel says: "The 
set is finite if it can be ordered in such a way, that any 
subset in it has, in the same order both the first, and 
the last element")» The naturally-arising question of 
whether a set, which is finite in the sense of one of the 
definitions, also finite in the set of some other defini- 
tion, it was found in many cases that within the framework 
of the given axiomatic theory it is impossible to answer 
this question: is it necessary to extend this theory by 
joining to it certain new asioms? Thus, in his "Ten Lec- 
tures on.Principles of Set Theory," A. Frenkel indicated 
that on the basis of the system of axioms proposed by him 
for set theory, a system not including the free-choice 
axiom, it was impossible to prove the equivalents of the 
Dedekind definition to some other definition? but he sta-» 
ted in the same place the opinion that with the selection 
axiom it is possible to prove already the equivalents of 
any two definitions of a finite set. 

In considering the wide class of logical-mathemati- 
cal calculi X    t   obtained by adding to the narrow calculus 
of predicates (with identity axioms) a finite (or, more 
generally a recursive-denumerable) system of axioms (the 
£  system of Goedel-Bernals axioms, which was already 

mentioned above, like any of its non-contradictive expan- 
sion through addition of new axioms, belongs among_the_ 
number of such calculations), B..A» Trakhtenbrot■ £  11_/ 
has shown that Frenkel!s hypothesis (as applied to all 
these calculations) is incorrect.  Thus it is clear that 
by joining, for example, the selection axiom to the cal- 
culations of Goedel-Bernais (and even any denumerable set 
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of axioms) it is possible to obtain a calculus in which 
one can prove the equivalence of any two definitions of a 
finite set (i.e., of any two formulas of the < calculus, 
which.are identically true in all the finite regions). 

^Furthermore, B. A. Trakhtenbrot has proved also that 
(£  11_/, theorem 4) in the axiomatic set theory there 
exists no strongest or weakest definition of a finite set. 
(The definition A is considered stronger, more accurately 
no less weaker than B, if in it is shown the considered 
calculus that any set, finite in the sense of definition 
A, is finite in the sense of definition B). An analogous 
result for a sufficiently broad class of definitions of a 
finite set was obtained in 1938 by A. Mostowski;  however, 
it is given.in-the article without proof.  The premises 
stated by Mostowski in this article are readily proved on 
the basis of theorems established by B. A. Trakhtenbrot in 
his articles / 1, 2^J, 

5.  The difficulties connected with basing a set 
theory are caused to a considerable extent by the fact 
that one transfers to infinite sets the methods of opera- 
tion with.finite sets, the elements of which are consi- 
dered in this case as'absolutely "solid" bodies, each of 
which is fully distinguishable from any other and conti- 
nues to remain "itself," being included in any set of 
objects or their sets.  If the mathematical objects do not 
satisfy this kind of requirement of "accuracy," they are 
usually excluded from consideration, and the mathematical 
concepts are defined in such a way, that only objects of 
this nature satisfy them.  The antinomy (paradoxes) of so- 
called naive theory of sets can be considered as evidence 
of the fact that "accuracy" requirements of this kind (and 
"discreteness") of objects are not observed in this theory. 
Various types of axiomatic theories of sets take it upon 
themselves to eliminate this effect.  To. what extent are- 
they successful in it, however? Thus, in particular, to 

1. A. Mostowski, über den Begriff der endlichen Menge. 
Spravozdania Tow« rank. Y/arsz. rfydzial III (1938), i3. . 
The principal possibility of the existence' of a denumera- 
ble set of deductively independent formulas, identical 
with the finite ones, was proved by Wajsberg in 1333 (see 
M. tfajsberg, Untersuchungen über den Puntionenkalkul fur' 
endliche Individuen berieche, Math. Ann.. 108 (1933), 
218 — 228). 19 



prove the non-contradiction of such theories, bearing in 
mind Goedel's second theorem, according, to which the non- 
contradiction of the sufficiently strong (formalized) 
theory cannot be proved by means formalized in the same 
theory? One of the attempt's' of proving the non-contra- 
diction of the axiomatic theory of sets by means of ano- 
ther theory, which is known not to satisfy the requirement 
of "accuracy" of its concepts and therefore cannot for 
formalized in the form of such a system, to which the 
second Goedel theorem is applicable, was undertaken by 
A. 3. Yesenin-Vol'pin.     _ 

A. 3. Yesenin-Vol'pin * criticizes the abstract 
potential realizability, which he considers to be merely 
an.idealization. In particular, he raises doubts concern- 
ing the reliability of the.principle of mathematical 
induction  (4^^K^»fc^C*Vl))jb.H>t(») »inasmuch as "in 
order to extract   ,4(10**1'■» A$%$' (j^4£jtojt(*+1))    » 
without resorting to this"pr*inciple, it is necessary to 
go through 10  steps, which is. impossible."  In this 
connection, A. S. Yesenin-Vol'pin introduces the concept 
of "realizability" as denoting the actual, and not idea- 
lized realizability.  From this point of view it is pos- 
sible to assume that 0 is a realizable number and if n is 
realizable, then n + 1 is realizable — and still assume 
that there exist non-realizable numbers, inasmuch, with- 
out resorting to the principle of mathematical induction, 
it is impossible to derive a contradiction from this. 
The principle of complete mathematical induction is found 
to be true for realizable numbers (under the assumption 
that the operation of writing out formula A(n) and a tran- 
sition from A(n) to A(n + 1) for a realizable n is reali- 
zable). One can speak also of a "relative realizability," 
i.e., realizability of numbers or other mathematical ob- 
jects under the assumption that certain definite numbers 
or objects and finite-value functions are considered to 
be realizable; in this case the reserve of relatively rea- 
lizable objects is determined by the possibilities, which 
are available to us under conditions of the given problem, 
of constructing certain objects from other objects, so 

1, A. 8. Yesenin-Vol'pin, Analysis of Potential Realiza- 
bility.  In press (first reported in 1956)» 
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that there are objects which are non-realizable in the given 
relative sense. This point of view is called by A, S» 
Yesenin-Yolfpin "outspoken,11 in contrast with the "tradi- 
tional," which acknowledges only One, idealized, realiza- 
bility. 

The concepts of the ''Outspoken" point of view appear 
dim in the traditional p\oint of view, and therefore cannot 
be formalized in the "traditional" systems (although there 
is a possibility of considering "outspoken formalisms"). 
This causes the author to hope that the second Goedel theo- 
rem is no longer an obstacle to prove the non-contradiction 
of a classical theory of sets by means of his "outspoken" 
theory. Using the idea of the relative character of reali- 
zability, the author replaces the concept of infinity by a 
concept of non-realizability and obtains in this way, con- 
vincing from his point of view, proof of non-contradiction 
of set theory, namely a system of Zermelo axioms. Using oh 
the other hand successively stronger and stronger hypothe- 
sis concerning the realizability of functions, defined pur- 
posefully with the aid of "outspoken" concepts, he also jus- 
tifies the non-contradiction of system with further axioms 
on the existence of "non-attainable cardinal numbers" (i.e., 
non-denumerable alephs with limiting indices, which are not 
limits of a smaller number of smaller alephs).      .. 

6. Problems concerning antinomies?(paradoxes) * and 
the associated "paradoxial" consequences "— the "naive" 
theory of sets and the corresponding broadened calculus of 
predicates without the theory of types have engaged, during 
the time of interest to us, the attention of P. S. Novikov 
and D. A.^Itochvar.  In one of his earlier papers, D. A. 
Bochvar / 4_/ separated, as is known, in the broadened pre- 
dicate calculus without type theory the known non-contradic- 
tory part (K- calculus), which contains no individual predi- 
cate symbols.  (Any individual predicate — including also 

1. The word "paradox" will denote from now on a contradic- 
tory expression (antinomy). 
2. There exists a general method of exclusion (elimination) 
in paradox from a deductive system of the type of broadened 
predicate oalculus. It is enough to note that in the 
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one defined only in terms of logical constants (negation, 
conjunction, disjunction, implication, quantors, and 
•equality) are classed.'by D. A. Bochvar. already to non- 
logical constants, thus separating mathematics from logic 
in systems of the type Prihcipia Mathematica of Russell 
and Whitehead). In the Kfl calculus, therefore, there is 
no "convolution" axiom *, which permits the introduction 
of individual predicates by means. vOf definitions of the 

(where p is the individual predicate of symbol and 
*(bj,... ,öj  — a formula containing free variables 
*i> •• ■.*» ) i  since in general there are no rules from 

which there would follow a statement of non-trival connec- 
tions of existentional character between the object and 
the predicate. 

In the construction of a formalized (axiomatic) . 
theory of sets (generally, any kind of logical-mathemati- 
cal system) it is necessary to add, hovever, to the axioms 
and rules of logic precisely statements of existentional 

Footnote 2 cont. from p. 21... ...derivation of the para- 
dox «srl* we used some sort of assumption <*•' , which is 
not deriavable in a purely logical (non-contradicting) 
part of the system ("absolute logical calculus" KQ of D. 
A. Bochvar /_  6_/), — for example, using the ax^om of spa- 
tiality, the axiom of selection, the axiom of "convolu- 
tion," or still others of this kind, in order, by intro- 
ducing in explicit form a reference to the used assump- 
tion ..• , to obtain instead of the paradox *»~rtl ' » for 
example,' the formula «»n8)&* , which in itself is no 
longer a paradox: from it it follows simply that both 

■ and « are false.  The formula H® proved in this 
manner is called^ after P. 3. Novikov, "a paradoxical con- 
sequence" (see £  18_/, pp. 22 and 23).  In the general case 
such a "proof" can hardly be considered, however, as a con- 
vincing refutation of the assumption ® }  too much could 
be"proved" in this manner. 
1.  The axiom "convolution" is sometimes called the ab- 
straction principle, *since it permits the introduction 
of new concepts. According to D. A. Bochvar,, such a defi- 
nition always contains in itself an existence statement. 
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character. Does not this_lead to a •contradiction? 
In reference [_ \Bj  P. S. Novikov indicated the 

type of axioms that could, be joined without contradiction 
to EQ, in any number. Namely, it was found, (theorem 1) 
that in order that a deductive system, formed by adding 
to Rh axioms of the type 

(corresponding to a statement of applicability of the 
rule of convolution to formula   C(xt^.txn)    ) to be non- 
contradictory, it is sufficient that each variable in for- 
mula (I) occupy either only an internal or else only an 
external rlace (one says that a variable (given its inclu- 
sion) occupies- an internal place, if it is under the sign 
of elementary predicate, and in the opposite case one says 
that it occupies an external place).  The logical system" 
formed by joining to K axioms of the indicated type, is 
called by p. o. Novikov a system of type ('S). '' n 

Considering further the paradoxical consequences 
©f a definite type from the definitions p(x)*s G(x)     , ■ 
where p is trie sign of single-place individual predicate, 
P. 3. hovikov (/ 18_/, theorem 2) establishes' (for the 
case when in the formula' G(x) each connected variable " 
occupies only either an internal or only an external 
place), that if the paradoxical consequences of such defi- 
nitions are derivable in some system of type (T), then the 
joining.of the formula. p(x) =» Q(x)    to any system'of type 
(I) does not .lend, to a contradiction.  *■  "       ' "  ' 

It follows from theorems 1 and 2 that definitions 
of such predicates, ",'hich are constants, for example 

/>{*)=* i ■ .(where 1 is the sign of truth), definitions of 
identity, reflexivity, transitivity, and also definitions 
of integers, given in Principia Kathematica, being joined 
to the system K , do not lead to contradiction. 

i'he concluding part of the remark by P. 3. Novikov 

1.  In the hn calculus (vhere any definition of an indivi- 
dual predicate is considered as an axiom, stating its 
existence), the paradoxical consequences of the definition 
of the predicate lose their paradoxical character: they 
become simply conditions ior'non-contradiction of a given 
predicate. 
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/ 18_/ is devoted to the problem of the general descrip- 
tion of any contradictory (single-place) predicates. For- 
mulas are given, which are necessary and sufficient con- 
ditions for a predicate p(x) to "be contradictory, These 
conditions permit also to find effectively the contradic- 
tory predicates. Furthermore, it is found that with 
their aid it is possible to outline (with accuracy up to 
equivalence in &n *) the general type of any contradic- 
tory (single-place) predicate.. •■ 

In reference _,/ 6_/ D. A. Bochvar considers certain 
methods of adding to the Kft calculus of individual predi- 
cates, based on concretizaxion of the relations of be- 
longing and consolidation, * at which certain antinomies 
of set theory and of the broadened calculus are known not 
to be obtained.  This concretization consists essentially 
of the fact that each of these relations is split up by 
Bochvar into two, having particular properties (defined 
by particular axioms).  The essence of this concretiza- 
tion consists of the fact that each of these relations is 
split by D. A. Bochvar into two, which have particular 
properties'(determined by special axioms). 

In'Section 1 of the article / 6_/ D. A. Bochvar 
.dwells especially on the general method he proposes for. 
the concretization of such calculations, which in models 
do not define fully uniquely certain of the sjnftbols or 
combinations of symbols that enter into the formulas of 
these calculations,)  Roughly speaking,, the idea which 
D.'A. Bochvar uses to guide himself in this case consists 
of the fact that not every (single-plaoe, for the sake of 
simplicity) predicate 'has a fixed (rigid) volume. The 
concept of volume: the object x, cpntained in the volume 
of the predicatesf , has the property '9 ; but if the 
object has the property ' <p , this still does not signify 
in general that it is an element of the volume of the 

1. Two (single-placed) predicates p and q are called 
equivalent' if one can prove in Kn the formula 
2. The relation of consolidation is a certain generali- 
zation of the relation between the predicate and its 
argument. . 
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„predicate *_." ; we shall interpret the expression «?(:r)* 
äs the "x has the property ; :>■", .while the expression 

**€?* "will he treated as "x is" an element of the1'-volume 
y ■-'L'.  and. .we .shall, re quire in particular •-- with the1 

aid of the' cehcr^tizätion of the consolidation relation -- 
that, (axioni III) "■' in the volume" of' the predicate there 
could be no such element «j> ,'for which t)»^ is true. Then 
it is clear, for example'',',that we can introduce the defi- 
nition of "normal predicate » ¥ by means of the -formula 

. %)gg?f?f • (2) 
(K is'the symbol for theindividual predicate "normal"), 
without' resorting to. the : fiussel 'antinomy» ■'. Actually, let 
us insert 3T instead of fin (2). We obtain 

. NlN^NtN. (3) 

Prom axiom (ill) it follows, -however, that 

or, inserting <J» in the place of 'f »'.''. ■ 
ig (I» _-,<})£(I), 

i.e. 

.t$t|r, 

In particular,' consequently, #€# ..  The right half of . 
formula; (3)  .is thus proved -. .consequently ithe left .part 
is also proved, i.e.,AWV) .  Instead of .a paradox in the 
("split") calculus, D. A. Bochvar obtains thus a theorem, ; 

which states that Rus'sel's paradoxical predicate "does not 
contain itself as an elejsent" and belongs to itself as a _ 
property, i.e., thereby, it .does not contain itself as an 
elemeht\ (is In itself hormal).' Other antinomies of the 
same type are similarly resolved, in this-'calculus of D. A. 
Bochvär. 

, ;; ■ Let us 'note, finally, that the set is. very naturally 
'defined in /_  6_/ in 'terra's'""of the volume of the predicate, ■ 
or more accurately, as such a predicate  <j> , for which'"'•,■ 

1. In / 6_/, D. A. Bochvar uses other'symbols'. ,. • 
2. We give here the rougher'formulation of this axiom. 
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ty(x)'mz € " 4>' •  To. the contrary, the a priori distinction 
of sets and classes» as is done for example in the £ ■ 
system of GoedeJ., which we have discussed above, appears 
to Bochvar /_ 6^/  to be less natural» 

In further works, reported by 33. A. Bochvar at: the 
sessions of the Seminar on Mathematical Logic at the Moscow 
University (13 November, 18 December, and 25 December 1957), 
ne engages in a-logical classification .of the formulas of 
the broadened calculus of predicates relative to the appli- 
cability of the "convolution" rule %o  them, i.e., to the 
possibilities of using them to define individual predicates 
and aggregates of individual predicates (from the fact that 
each individual predicate can be joined to the system with- 
out contradiction it still does not follow as yet that in 
their aggregate they cannot lead to a contradiction). 

However, these investigations are still not comple- 
ted at the present time. 

2«  Descriptive Theory of Sets 

1.  At the initial period of the development of the 
Moscow School of the theory of Functions, the descriptive 
set theory was at the center of the scientific interest of 
N. F. Lusin and many of his students: M. Ya. Siislin, P. 
S. Uryson, P. o. Aleksandrov, A. H, Kolmogorov, L. V. 
Keldysh, M. A. Lavrerrt !yev, P. S. Kovikov and others.  The 
result of the works in the field of descriptive theoryof 
sets, of that period appeared, on the one hand, to be a 
vigorous development of this.field itself, and on the other 
hand an extension of general concepts, that arose 'in the 
descriptive theory of sets, to various other fields of 
mathematics.  In an axiomatic description of any particu- 
lar system of mathematical concepts, one frequently resorts 
to the concept of B or A sets.  The modern development of 
the theory of algorithms is to a considerable extent the 
embodiment of the idea of H. N. luzin concerning the neces- 
sity of investigating the descriptive calssification of 
denumerable sequences.  The close relationships between 

1. This section was written by Z. I. Kozlova and A. A, 
Lyapunov. 
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the concepts of the B and A sets with the concept of recur- 
sive and recursive-enumerated sets is universally known. 
In the most recent time the set-theory concepts have begun 
to penetrate broadly also in other branches of theoretical 
natural sciences, in particular in cybernetics. At the same 
ti"..e in recent years the activity in the work in the field 
of descriptive theory of sets has increased. During the 
period reported, work in the field of descriptive theory of 
sets was continued by several of the students of P. S. 
Novikov and L» V. Keldysh. 

Working in Stalingrad are Z.I. Kozlova and I.D. 
Stupina, in Kolomna — A. V. Gladkiy, in Ulan-Uda — B. 3. 
Sodnomov, in Ivanovo — A. D. Taymanov, in Simferopol' -*• 
Ya. L. Kreynin, in Glazovo — R. Yu« Matskina, in Riga — 
E. I. Arin'. In Moscow problems of descriptive theory of 
sets are treated sporadically.by Yu. S. Ochan1, Ye. A. 
Shchegol'kov, S. 7. Yablonskiy, and A. A. Lyapunov. 

During the period reviewed, work was carried out in 
the following directions: 

1) A study of the structure of A sets and protective 
sets was completed in the main outlines even in the preceding 
period, if one disregards the problems that gave rise to the 
fundamental difficulties. During the time reviewed, a study 
was contained of the singularities of the construction of 
flat sets with specified descriptive nature, 

2) Various works were carried out on problems which 
are affiliated with descriptive theory of sets and abstract 
topology, and also for descriptive and axiomatic theory of 
sets. 

3) Development was carried out of the theory of ope- 
rations on sets. 

Works on the study of special properties of plane sets 
have become associa/ted to a considerable degree with works 
on the theory of operations on sets. 

In addition, it is necessary to emphasize the very 
interesting works on the study of recursive sets, which were 
carried out by V. A. Uspenskiy and B. A, Trakhtenbrot, which 
in their contents pertain to the theory of algorithms, but 
which are very close in their idea to the descriptive theory 
of sets,  ,/e have very little time to prepare the review and 
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we therefore apologize for its incompleteness. 
__  2.  In the works of Z. ,1. Kozlova / 2, 5» 6, 8, 11, 

14_/ and I. D. Stupina / 1, 2_/ an investigation was 
carried out on the special properties of plane sets-with 
a specified descriptive nature. These works are a natu- 
ral continuation of the work by N. N. Luzin, V. I. G-liven- 
ko, and P. S. Novikov on the study of covering and split- 
ting of plane B sets» The first works by Z, I. Kozlova 
pertain still to the prewar period. A characteristic of 
this trend was the establishment of results of the fol- 
lowing type. 

The set belongs to the absolutely first class, if 
it has on each compact set a point of local compactness* 
In this case the given set can be represented as a trans- 
finite sum of compact sets, where each component is sepa- 
rable by means of a set of zero class from the sum of all 
the following sets.... , • 

The minimum:iength of such a sum is called a sub- 
class of a given set.      

In the Baire space •/*„ there are considered plane 
A sets $. t  which have that property» that all sets &x$ 
of the absolutely'first class of subclass <«. where a< Q(^x 

denotes the sets of all the points of space JXv   with ;a 
constant abscissa x).  It is proved that any A set tCZ<fX), 
of the indicated type can be covered by a B set H (i.e., 

HZ2$  ) such that all sets #$*, are also absolutely of 
the first class of subclass <« . 

This theory admits to the following generalization: 
instead of a set of absolutely first class.it is possible 
to consider such set3, which are expanded in a transfinite 
sum of subsets, having a compact closure, whereby each 
component is separable from the sum of all subsequent sets 
of null class. 

For plane B sets H, for which each of the sets 0V# 
is a set of absolutely first class of subclass .'<«.' , where 

A<ß.   , there exist an expansion in the form 

jf-Z"/**'-" 

where  f/t//v=*0 '., for  $^€'' , öach of the components 
H%   is a B set, each of the sets &x-ffi      is compact, and 

t4^*'"
£  is such that each component is separable from 
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the sum of all subsequent by means of a set of zero class' 
relative to 0*x  . 

Analogous results are obtained also for cases when 
9^x  has certain other topölogicäl properties, descri- 

babie in terms of transfini.te indices. 
3» Further investigations of problems concerning 

coverings has followed the line, of investigating problems 
relating with the theorj^of operations on sets. In the _ 
work of A» A, Lyapunov £  36^j/ the theorem is established 
concerning the covering of %m   sets:  If I is a rigid base 
of the /?« operation and'. ^«»{^ .„„ } is a table of s/jf* 
sets (or of ■ ,-ftmf-    sets) such that each point of the 361 

/fyw>{£n, ••• nk}     is a point of a. N-uniqueness „of the table 
;|f > 'then there exists a. table   .'$'*■{#», '••>«»)    of 
5/?« sets (or Btl^  sets) such that ^^...1,^3^11,.*.^  and 

eacn- point of the "set H{Ny{ffm,^- nk}      is a point" of N~ 
uniquehess of table- W      ."_"'■' ■ 

Z,  I. Kozlova'has shown that'the theorem remains 
valid if the points of N-uniqueness are replaced by points 
of N-p uniqueness and by points of H of finite valuedness. 

In the papers by Z. I. Kozlova and I. 1). Stupina it 
is shown that the covering theorem holds also for A-,  /*-, At-' 
and CA& operations on CAr sets, for the cases of points" of ' 
N-p valuedness, N~finite valuedness, N-non~denumerable~ 
valuedness, and for certain other cases. 

4. In the descriptive theory of sets several results 
were obtained of the following character: one considers a 
projection of a plane set and expresses an opinion concern- 
ing the descriptive nature of the set of points of the pro- 
jection, the inverse images of which have a certain special 
property. Por example, if one projects a plane A set, then 
the set of points the inverse images of which contain not 
less than two points, is the A set (H. N. Luzin), the set 
of points the inverse images of which contain a non-denu- 
rnerable set of points is also an A set (¥. Serpinskiy)* 

Many problems of similar character were solved by 
P. 3. ITovikov, ?. Ya. Arsenin, S. Braun, and K. Kunuguya. 

Analogous theorems in the theory of operations have 
been established by A'. A. Lyapunov / 36 ,■ 51_/. 

2. I. Kozlova and I. D. Stupina obtained several 
results, in \tfhich they studied the degrees of degeneracy 
of the results of an operation depending on the topologi- 
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;cal characteristic of the set of chains of the given ope-'; 
ration, which specified each individual point. ■■ 

5. In all these investigations the principal-appa- 
ratus used was the multiple- separability. In this connec- 
tion, the question arises of the necessity of systematiza- 
tion of the principal premises of multiple separability as 
applied to various set-theoretical systems.- Such an inves- 

tigation was carried out by Z. I. Kozlova, 
Superposing on the system of sets requirements of " 

invariance under certain operations and assuming that in 
this system there take place only relations of multiple 
separability, it becomes possible to establish that in this 
system there arise also certain other relations of multiple 
separability. A certain summary'of the results of .such a 
character was obtained by Z. I. Kozlova /"l, 3, 8, 9_y. 

6. let us now proceed to an examination of works 
devoted to a detailed study of certain structural proper- 
ties of sets, studied in the descriptive theory of functions. 

A.A. Lyapunov £  29, 39, 51_/ has introduced the con- 
cepts of a rarefied class of set and descriptive measura- 
bility. \ 

The class - H of subsets of absolute B-set J is■ 
called rarefied, if it satisfies the following conditions: 

1°. ■  ' /f S. 

2°.  The subset of the set that belongs to 1| 
belongs to -g' . 

3°. , Any set E, belonging to *& , is contained in 
the B-set E*, belonging to E. ' ■ . 

4°. A sum of not more than a denumerable number of 
sets belonging to  2, belongs to  £ 

5°. Any system of pairwise non-interseeting B-sets, 
not belonging to  3  , is not more than denumerable. 

.The set E, represented in the form '£**£,+-£,!  , 
where £; is a B set and ; ^f 2  , is called.  S  -measur- 
able. 

A set that is  2- -measurable for any rarefied 
class  .2  , is called descriptively measurable.  Certain 
related properties of sets were considered by S. Spielrein 
and M. Condo. 

Any descriptive-measurable set has the Baire proper- 
ty and is absolutely measurable. . In fact, in all those .j 
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'oases when the presence of the measurability of the Baire■ 
property is established'along the path of descriptive . 
theory of sets, the descriptive measurability is estab-- 
lished. "        - 

.' The problem arose of what.is the relationship be- 
tween the property of descriptive measurability to the 
absolute measurability and the Baire property. A. V. 
.•.Grladkiy, leaning on the hypothesis of continuum, has cons-, 
'truoted an example of a set that has the Baire property and 
is absolutely measurable» but is not descriptively measur- 
able. '  '  .        ■ _ _ 

In the work--by Ya. L. Kreynin / !_/ there were found 
several general conditions, which are sufficient to make, "■ 
in a certain abstract space, correct the theorem of A. I. 
Kolmogorov concerning the non-empty class of sets, obtained 
by ji* -operations. In another investigation he investiga- 
ted "certain effective methods of defining set-theoretical 
concepts. The concept*of effective non-denumerability was 
introduced earlier by P. S. lovikov, while, the concept of 
effective measurability was investigated by A. A. Lyapunov 
L  26_/. Ya. L, Kreynin has shown that any B~set, which is 
effectively distinct from A-set invariably contains a per- 
fect nucleus. 

7. "Let us proceed now to an examination of works 
concerning the study^ofJB-functions. 

B. I. Arin' £  3^ has investigated the construction • 
of B-functions  V/f4^f^-^) .  /where I ftea«*«»...•>*»)' 
is a continuous fuMiioln in each of its arguments, . 

S. V. Yablonskiy £  1_/ gave a new exposition of the 
singular properties of the fundamental properties of B~ 
functions, leaning on the theorem of the separability of 
B-sets.  In the same investigation there was constructed a 
mutually-unique B-mapping of the Baire space on a Hubert 
space, which permits establishing quite automatically many 
set-theoretical properties of sub-sets of Hilbert space. 

S. We now proceed to an examination of problems 
that are related to descriptive set theory and abstract 
topology. We note first of all that in the very deep re- 
searches of L. V. Keldy'sh, pertaining to the topology of 
open representations, a considerable role is played by the 
methods of descriptive theory of sets and in particular by 
the use of the theorem concerning the multiple separability 
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for closed sets.     ,_     „. ' 
E.Yu. Hat skin £"l' — ij  has investigated the 

structure of non-continuous and also of continuous and 
mutually-unique samples of closed sets of Hubert space, 
which were found to be arbitrary A and B sets. 

A. D. Taymanov / 2j  gave an analytic representa- 
tion of rigid bases ofj45-operations and has clarified the 
descriptive nature of rigid bases for certain : I is  -opera-  
tions, and specifically has shown that the rigid base of 
A operations is a set of type Gt  ', while the rigid base of 
a T-operation is the OA set. 

The works'of A.JD. Taymonov "On Quasi-Component 
■Non-Connective-Sets» / 1, J>J  arose out of the works of 
P. S, Novikov,' who proved that a'set of components of an 
arbitrary A set has a cardinality that is either continual 
or not more than denumerable. 

A. D. Taymanov generalizes the concept of a quasi- 
component, introduced by 31. Hausdorff,. gives a definition 
of a quasi-component of rank ■ a and defines the index, of 
connective components, let there be given_a „non-connec- 
tive set ■.£cÄ(*> •' ^be 1-quasi-component El    of the 
point x in topological space E is defined as the intersec- 
tion of all the open-closed sets in E-, containing the point 
x. The component of the point x in E is contained in the 
quasi-component El    and coincides with it when and only 
when Ei     is connective. 

The quasi-components of rank *> t are defined 
inductively. We assume that there has been defined an 

.a-quasi-component' . £*  of the point x in 1 for all 
«<£ , then we determine the £  -quasi-component [,£*. . 

Two cases are possible? 
1) P     is the number of the first kind, if '£*" 

is a'connective set, then by definition ■ ;£^*££~',  • 
If  £-«  is a non-connective, set, then the one-quasi- 
component of the point x In  ££~*  is called the >f  -qua- 
si-component of the x in E and is denoted by £& .. 

2) P    is the number of the second kind. We then 
put  £»■■ n £*'  •.        ■-,' , 

*The^quasi-components £*      are closed in E. The* 
• -quasi-components of one" rank of two different points 

either coincide or else do not intersect, so that one can 
speak of the breakdown of the set E into  >: -quasi-com-j 
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Iponents and this breakdown* generally speaking, is larger! 
than the breakdown into components* 

We denote- by LMV, a set of quasi-oomponent's of a .rank 
not exceeding i#.  . A.. D- itoymanov"proves the .following 
premisess .    ,..!'.....,   . , ,. r ■ . 

.1) If E is an A-set than jidlj forjej^jg] either has 
the cardinality of" continuum, or is- not more than denttme- v 

;rable. ■     ■....-'■ '■...■. -■ ^~ 
■    ..':   j..;, 2) From the existence of an effective set having ' 

IM*f -quasi-components» follows the, ®xistj§^ae of an 
effective set having {HJ' points« 

I'hese.-results take place in arbitrary metric space 
with a denumerable base,- 

In addition A. -D, Taymanov gave methods for the ', ■ 
investigation of the descriptive nature of the space of 
quasi-components of various sets« Later on in the work, 
when the topology of; closed- representations is investiga- 
ted A. D. Tayjsanov </~8y shows that the closed representa- 
tions of CA«sets» and also \ <£^, -sets are sets of the same 
nature» "        . 

He also succeeded in investigating the nature of 
finite, and. d enumerable-multiple open images of [IS - and 

[CA -sets. • 
9« "During the last decade many works were carried 

out on the study of operations "on sets,' leading'to R-sets, 
and their generalisations (the principal works of A. A± 
Lyapunov on H-sets / 17, 19, 24, 27, 28, 36 — 39, 5lJ7 were 
carried out in 194-6 «~ 1947, although they were published in 
detail only in 1953)* 

In these works the question was raised of investigat- 
ing regular processes of complication of operations on sets 
and clarification of the question at what types of compli- 
cation of operations on sets are retained very structural., 
properties of : sets, obtained with the aid of these opera-" 
tions» It was found'that instead of the cumbersome appa- 
ratus of the R operations It is possible to use the consi- 
derably more flexible and at the same time more readily 
visualized ^-operations» \..'....... 

. Let there be given a sequence of bases t|#«)' ..A 
T-operation on an arbitrary sequence of sets -(0n}j   , cor- 
responding to |this sequence of bases, is defined! as 
follows:'    I ■ ■ • _J 
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-J_ 

n' u<y 

where y is a transfinite number of second, kind.  Then • 

■•-4- and /?«-operations can be represented in the 
form of T-operations.  J?or these operations, -one defines 
in a natural manner transfinite indices and for these in- 
dices it is possible to establish the principle of compa- 
rison of indices; which generalizes the principle of com- 
parison for A-operations of P. 3. Ebvikov. 

. If all the operations {<P/v.}      retain a descriptive 
measurability, then the . fy^ .-operation has the same pro- 
perty.  If a certain protective class is invariant rela- 
ive to all operations *fwt) , then it.is invariant'rela- 

tive to the operation T^t\ . The base of the T^j ope- 
ration is .obtained in'tue foilowing manner:  let us put 

m 

0 

«S. • • •. KJJ ft»H> 

.G.eTx 

7V(>« 4>s 

A considerable part of the theory of A-set, and 
also of C-and R-sets, is obtained by using T-operations. 

10.  The problem of investigating-further types of 
broaäenings of set-theoretical operations arose in a natu- 
ral manner.        ; „  „, 

A. A. Lyapunov / 39_/' succeeded-in constructing a 
certain class of set-theoretical operations, which no 
longer are  te -operations and which have the following 
properties: ' : 

1) All these operations are obtained by means of 
a regular transfinite process of broadening and are num- 
bered -with the aid of transfinite numbers of first, second, 
nd third classes.       '        .  .. 

2) These operations are characterized by the fact 
for these there exists a "feedback" between the 
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'reprocessed sets and.the base. ' 
The operations-function in such-a manner: one con- 

siders the inclusion or ncnrinclusion of a given point' in 
a set of the proposed sequence. From a certain sequence 
of these sets one choses the final base, and then the 
operation at a given point is performed with the selected 
base. Thus, it becomes necessary to act on each indivi- 
dual point* One must note that; the entire construction is 
quite effective» 

5) If the initial operation retains«**« descriptive 
measurability, then also- all operations obtained from it by 
means.of the described broadening also retain the descrip- 
tive measurability. 

. 4) R-operations coincide with the first ;# -opera- 
tions of this system. 

All this construction can be considered,as a new 
embodiment of the idea of P. S. Novikov concerning the 
construction of the maximum-broad system of. effectiveness 
of sets. . - 

The weak spot in this construction is that is rela- 
tionship with protective sets remains unclarified. 

11. Next A. A. Lyapunov ^ 44 — 46_/ has construc- 
ted certain new processes in the broadening of set-theore- 
tical operations. Let there be given sequenses.of sets 

. i-fi^ ■ and two sequences of bases /{/¥„} and ({MJt  »■ Let 

us put ! Ä-jf* Äy^-jtfw*».' 
«* 

*» ... 

and for numbers \f   of the second kind      ' \E»m1i£L**-    •  'riien 

«<t 

The iV». -broadening has many analytic properties, 
which are allied to the analytic properties of -Jjft -broa- 
denings. 

12. The next step in the direction towards broaden- 
ing the set-theoretical operations was made by 2. I. KoaV 
lova, who started out with works of I. V. Kantorovich and 
L.. Ye. Llvenson on the. study of protective operations. In 

...the most recent times, 2. I. Kozlova has succedded in ._.'. 
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separating a new class of set-theoretical operations, 
defined in the following manner: 

For these operations it becomes possible to-'define a class 
.of internal traaefinite indices,' which.is fully analogous,__ 
jto the class of minimal indices of P. 3« Novikov. For 
these indices it becomes.possible also to o||&in a certain 
form of the principle of .comparison of indices, which gene- 
ralizes the principle of index comparison of P. S. Novikov 
for Ap sets. The next problem is fit study of the mutual • 
relationships between various types of broadening of set- 
theoretical operations. 

13. . During the period reviewed, there was published 
in Usphekhi matematioheakikh nauk a cycle of articles on 
descriptive theory of -sets, where a summary exposition of 
the theory of B-se'ts was given (Je*  A. Shchegol'kov L2j£) » 
of A-sets (A. A. Lyapunov /~3JL/ and ?.'Ya. Arsenin / ^J), 
B-functions (A« •£. Lyapunov 2 3<L/)-and the theory- of ope- 
rations on sets (Yu. S. Ochan I  13„/)«. In these articles 
a considerable simplification was obtained of its exposi- 
tion, and furthermore,'it contains many new results. We 
note the results of Ye. A. 3hchegol?kov on that a plane 
B-set, intersected by any perpendicular to the OX axis 
along set3 of type IV, is unified by means of a B-set. 

In the article by Yu. S, Ochan are expounded ori- 
ginal results whioh concern the comparison of cardinali- 
ties of operations with respect to classes of sets,- whioh 
are invariant relative to a certain operation, for example, 
the operation of the sieve and the A-operation are equiva- 
lent to each other with respect to classes of sets that 
are invariant relative to finite intersections, but are not 
equivalent to each other in the general case, 

. 14. Concluding the survey of work on descriptive 
theory of sets, it is necessary to note with satisfaction, 
that during the reviewed period there were published the 
lectures by N. H. Luzira "On Analytic Sets" in two volumes 
of his collected works, in which are included papers on 
descriptive, metric theory of functions, and also papers on 
the theory of functions of complex variable« „j 
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Chapter II 

THEORY OP ALGORITHMS AMD COMPUTABLE FUNCTIONS 
AND OPERATORS 

■3. Representation of Recursive Functions 
Functions of Large Spread 

1. The creation of a meaningful mathematical theory 
of constructive objects of mathematics began naturally with 
a study of computable functions (of a finite number of vari- 
ables), as arguments, since the values of which are the 
natural numbers 0, 1, 2, 3,-. '  Since the^ery construc- 
tion of the natural numbers has a recursive * character (in 
order to determine, for example, the number five, it is 
necessary to define first the number 4; to define the number 
4, it is first necessary to define 3, etc., down to 0, which 
is considered as directly defined), then it is natural to 
identify the computable functions with recursive functions 
(Church's thesis). 

Even the simplest recursive (inductive) definitions 
(of a single-place) function f have an implicit character; 
the value of the function for any non-vanishing value of 
the argument is defined in terms of the value of the same 
function for the preceding value of the argument.  The most 
general definition of a recursive function is obtained as a 
generalization of the following%  the function is called 
recursive if it can be specified by a system of equations 
which not more than uniquely determines its values and which 

1*. "see* the foreword by A. N. Kolmogorov to the book by 
R. Peter "Recursive Functions," Moscow, Foreign Literature 
Press, 1954. From here on we shall call functions of this 
type arithmetic or numerical. 
.2.  In the literal sense of the word (recurso — latin for 
running back, return) a recursive definition is naturally 
called a definition which is realized with the aid of 
"returning" from the unknown to the known (A. N. Kolmogorov, 
ibid, p. 4-). 
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permits their calculation (for these values of the argu- : 

reents, for'which the function has/been defined) in terms 
of the values of the function itself (and of other func- 
tions, which can he determined-from it simultaneously by 
the same "system-of equations), i.e., It thereby bears a 
more implicit character. ' (It is naturally understood that 
if for certain given values of all its arguments the value 
.of the.function is determined by a corresponding :system .of 
equations- in terras of its value for the. same-values of the : 

arguments, then for these values of the argument the fac- 
tion is not defined. ),-<;    :,.,,:■'        . '.;■,. ■.■■.'■■':■!■'.: 

■.  "• :.'?A  'recursive function that" is defined everywhere is : 

called" gerierally"~recursive. ..If a recursive .(n-place). , 
^function is hot required 'that it be defined' for all the ,...■ 
.groups of n-value s: of its'arguments, ..then the function, is .. 
calls d" p arti'al ly-r e cu r s ive."' In the-class of generally-  ' 
recursive 'functions one .separates usually» as the ■ simple st.. 
subclass, -the class of primitively-reoursive functions,   '. 
which contain the ..constant ^0,. the succession .function .' 
(which-relates to . -J;he-number n the succeeding number  . 
n + IV arid-, closed/relative/to the operation of"-substitü-/V 
tions*.and schemes of primitive recurrence (which define.. , 
the'value pf the function f for .the arguments.(».+1, '£,;«.,._, xn). 
as the value of the already .defined function : f for' the , .' 
arguments {n, f[n, jr,....,*^,*,,...,*^   and which specify, direc- 
tly the-value of the function f.for the arguments (0,xlt...:xn) 
ias.the value, of the already, defined function J> .for .'the / 
sane arguments')', ' '        ;■'','       ■ 

V Through Go edel f.s arithmeti sat ion of. logical'and 
logical-mathematical calculations - (generally, .so-called ' /; 
formalized systems), primitive-re curs ive fxinc tions acquire 
a particular'significance in the construction of the 'gene-; 

1. By' "substitution*' we mean here both the substitution, of 
functions, as well as the ■substitution of variables. ,'; If ,-. 
one do'es; not use the operation :of. substitution of variable's,- 
then it is necessary to add to the initial'functions in I..' 
this definition also the function of identity  /■(*)*=* 
V. A. Uspenskiy's refinement -pf the general concept of sub- 
stitution can be found in the book by R. Peter, »Recursive 
Functions, Moscow, Foreign Literature Press, 1954, p. 38 
(footnote). 
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ral theory of such systems«  iiiven the rerj  method of 
specifying primitive-recursive functions recalls the me- 
thod of specifying the rules for the production and- 
rules of transformation in-logical .calculations: one 
specifies directly the primitive-recursive functions as 
initial ones, and inductive rules are then given which 
makes it possible from the already-constructed primitive- 
recursive functions to construct new ones. However, the 
imparting of an exact meaning to this analogy and the 
clarification of the actual meaning of primitive-recur- 
sive functions is a difficult problem certain results 
of which will be clarified- by_ us in connection, with the 
work of A. ¥. Kuznetsov /_  1_/» based on a study of the 
examples of complex-recursive functions (i.e., general- 
recursive functions which are not primitive-recursive), 
belonging to the author. 

.'■ Let us note that in the history of the development 
of the theory of recursive functions and operators, the. 
principal significance was attached initially only to . 
general-recursive functions: the most important role of 
partially-recursive functions (and particularly opera- 
tors) was' clarified completely with active participation 
of the Soviet mathematicians and logicians, which we' 
shall dwell on later, only in recent years. 

The implicit character of the specification of 
the recursive function by means of a system of equations 
that defines it has naturally given rise to the desire 
for replacing this implicit definition by an explicit 
one.  The latter was "realised -for'generally-recursive 
functions in 1936, for partially-recursive- functions in 
194-3 by Kleene, who has shown that is enough to add to 
primitive-recxirsive functions (and predicates) the ope- 
rator '«py...» "the smallest y such that...0 in order to 
obtain the possibility of representing explicity any 
partially-recursive function, specified (implicitly) by 
a system of equations'that defines it.  Connected with 
the Kleene representation is one important problem a 
complete solution.- of which» now contained' in all the 
monographs and handbooks on the theory of recursive 
functions, belongs to A. A. Markov,  v/e now proceed to 
an elucidation of the corresponding works by A. A. 
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Markov of 1947 / 36_/ and 1949 Z'39-71* "■ 
2.    ••Phe explicit representation proposed "by Kleene 

for a recursive function F of n arguments has the form 

*fe„ .... *J-Pfo($(*|t .... »^ ^»0»,      (/f) 

where P is the primitive-recursive function of one  argu- 
ment, Q a primitive-recursive function of n + 1 arguments, 

_:  *t*jf .^ .* v«~ the smallest of the numbers y which cause 
Q(xu ...,'a:K,y)    to vanish (for given '*»; '..., xk ). ' (If ¥ 

is a general-recursive function, then the function Q 
should satisfy the additional condition 

Vx,... Vx&iQbt,    xft, y)-©), 

i.e., the- function  ffpy •..» should he defined for all the 
groups of n-of (ar,, «.., arÄ) .)    . 

it was found here (this was clarified by Kleene in 
194-3) that, in representation (4) it is possible to choose 
the;primitive-recursive function? quite independent of 
the represented function P. However, the function P, 
v/hich is universal in this sense, and indicated by Kleene 
himself, was defined by means of a very complex aggregate 
of substitution schemes and primitive recursion schemes; 

In 1944 Skolem suggested that one can dispense' in 
general with the function p, i.e., one can. represent any 
general-recursive function P of an argument in the form 

where.Q is a. primitive-recursive function of.n + 1 argu- 
ments, satisfying the foregoing additional condition. 

Skolem formulated in this case a simple necessary 
and sufficient condition for representability of a gene- 
ral-recursive function in the from'(5)»  However, the prob- 

1.  The paper by A. A, Markov / "39_/ contains a detailed 
proof and a certain strengthening of the result detailed 
in his note /_  36_/»  The solution of Markov together .with 
a complete proof of all his theorems is given in the book 
by R. Peter "Recursive Junctions", Moscow, Foreign litera- 
ture Press, 1954, pp. 190 — 195.  See also o, C. Kleene, 
Introduction to Meta-Mathematics, Moscow, Foreign litera- 
ture Press, 1957» p» 258. 
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aen of whether any general-recursive function satisfies '■ 
this condition Ms reclined open. 

IT. 1946 Post answered this question in the nega- 
tive, giving an example of a general-recursive function 
that did not satisfy the Skolem condition. 

A complete solution'of the problem of the class 
of primitive-recursive functions P* which can play a 
.role of universal ones in the representation (four) was ,_ 
given in 194-7 by A. A. Markov /.36_/« 

Markov's solution consists of the following. 
A primitive-recursive function P (of one argument) 

is universal when and only when it is a function of large 
spread, i.e., it assumes all the natural values, and^with 
this each of this it assumes an infinite number of times. 
In the representation of Skolem (5) when actually he takes 
for P the function .-/>(*)-'*., which is not a function of 
large spread (it assumes each value only once). By vir- 
tue°of the Markov theorem this explains that not every 
general-recursive function is representable in the form 

(5). 
We remark that the proof of necessity for a uni- 

versal (for all general-recursive) functions P be a func- 
tion of large spread  is of the reverse type, i.e., not 
constructive.  "It is hardly possible tb_replace.it by a 
constructed proof," notes A. A. Markov / 39_/ (P« 424), . 
and he formulates on the spot a weakened form of theorem ■ 
III (equivalent to its double negation), proved construc- 
tively by his arguments. • _.  _. 

3.  In the same work A. A. Markov / 39V» in connec- 
tion with the proof of the lemma he requires raised a ques- 
tion equivalent, as noted by A. V. Kuznetsov £  l_/> to the 
following:  do there exist such monotonically-increasing 
complex-recursive functions ]'?(*)• , for which the set of 
values are primitive-recursive (i.e., primitive-recursive 
predicates I?, where   F(x)*s%%t(f (t)**x)) ? 

T.    We~hav71n mind here the proof of theorem III: on the 
pospibilitv of constructing such a general-recursive func- 
tion of n arguments, ihat in any of its representation in 
form (4) (with primitive-recursive P and Q) P is a func- 
tion of large spread. 
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As is well known, the hanging of an existence    ; 
quantor on'a two-place primitive-recursive predicate 
gives rise to a one-place predicate, which occupies in the 
well-known Kieene-Kostowski classification a higher place: 
this is a recursively-enumerable, "but.: in the general case 
not a recursive predicate. '  It terns out, however, as 
was shown by'A. V. Kuznetsov [^X_J  *)» that a positive 
answer should be given to the foregoing question. 

In the fall of 194-7 A* V. Kuznetsov independently 
of vv. Ackermann (the example * constructed hj the latter 
was unknown at that time to A. V. Kuznetsov) constructed 
several examples of such functions, which are generally- 
recursive, but increase more rapidly than all the primi- 
tive-recursive functions. • One of the simplest examples 
of such types of function was the function fW , defined 
by the following system of equations 

f(ar)«*<t»(x, x),   $►{*, 0)n»2ar, 
• (0, lf')«i,   #(*', y') »*{*(*♦ y')t y). 

■ The .function <&(r, y)  /Vwas later on denoted by A, "V, 
Kuznetsov by 2^ ; with this, the resu.lt was <p(x) =»2*. '•' 

As can be seen from the system of equations defin- 
ing it, the function ^(a) is general-recursive. At the 
same time, 2%    increases with increasing x  faster than 
any primitive-recursive function: no matter what the 
primitive-recursive function f(x)   , we have for it 

Thus,  2«  is a general-recursvie but not a primitive- 

1. Recursive predicates are analogues of B-sets, while 
recursive enumerable ones are analogues of A-sets. 
2. ihe note by A. Y. Kuznetsov 7 1/ was dictated on 
12 January 1958.  The actual results published in it were 
obtained in 1947—194-9. 
3. v/. Ackermann, Zum Hubert sehen Aiifbau der reelen Zahlen, 
Math. Ann. 99 (1928.0, 118 — 133. . The works of H. Kbether 
and 3. h. Robinson, mentioned in the book by P.. Peter 
"Recrusive functions," Moscow, Foreign Literature Press, 
1954-, p. 92, footnote 2, were also unknown by A. V. 
Kuznetsov. 
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; recursive function.    .      ■ '■. 
In  general, from a comparison of the function 

%y   with the primitive-recursive functions, A. V. 
Kuanetsov obtained-in 194-7 •-— 194-8 the following propo- 
sitions. 

a) The function 2£ for any .(fixed) n is primi- 
tive-recursive» 

•      b) ]?or any primitive recursive function f(x) there.._; 
exists such natural numbers n and ra, that 

c)  In order for the function f(x) to grow 38ore 
rapidly than ail the.primitive-recursive functions, it is 
necessary and sufficient that it grow more rapidly than 
all functions of the type 2£   (n fixed). 

i-'/ith the aid of function 2JJ »A. ?. Kuznetsov in- 
deed answered directly the problem raised in 1949 by A. A. 
Markov. lamely, it was found that the function ;2£ (which 
is monotonically increasing) is generally-recursive, but 
not primitively-recursive,-while-the predicate ]?, where 

Ftysa'&fäsmx)   ±B  primitive-recursive (A. V. Kuznetsov 
Z iV). 

Prom among the number of other applications of 
everywhere computable (general-recursive) functions, 
which increase-more rapidly than all primitive-recursive 
ones, with which A, V. Kuznetsov dealt in 194-7 — 1948, 
we' shall mention the following. 

The first, chapter in the booklet by A. la, Khinchin 
'fri zhemchuzhiny teorii chisel!l / Three Pearls from the 
Number Theory^/ is devoted to a proof of the well-known 
Van der .-/aerden theorem, which states: 

Let k and I   be arbitrary natural numbers.  Then 
there exists such a natural number »{&*/), that when any 
segment of a series of natural numbers of length *(&tl) 
is broken up in any manner into k classes (among which 
there nay be empty ones) an arithmetic progression of 
length vrill be found in at least one of these classes. 

In two different editions of the booklet by A. Ya. 
Khinchin, this theorem is proved differently» But in. both 
cases the .function n(fc,l),    which satisfies the conditions 
of the. theorem, is so constructed, that it isn't majored 
by any primitive-recursive function.  The latter was . 
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indeed observed by A. V. Kuznetsov with the aid of esti- : 
mates, obtained by him through comparison of a defining 
construction for »(£, /} with the definition of 2J , 

In addition to the answer to the question of A. A. 
Markov, the note by A» V« Kuznetsov / 1__/ contains a cer- 
tain attempt to develop a general theory of functions of 
large spread and the associated (with these functions and 
not with the expansions into simple factors) numerations _ 
of pairs, groups of n, and processions (i.e., any type of 
finite sequences). '.-„»- 

In the note by A. V. Kuznetsov / !_/' there is alo 
formulated a certain thesis, pertaining to the characte- 
ristic featuree of any effective computation process, and 
as a consequence of this a general conclusion is drawn 
concerning an estimate of the length of the process of 
calculation of a complex-recursive function. 

A.s is known, the question of any particular charac- 
teristic differences of primitive-recursive functions from 
general-recursive functions.has not found as yet a convin- 
cing solution.  It is true, naturally, that the remark'of 
R. Peter1'(made by her in connection with the foregoing 
Ackermann example), that the most substantial peculiari- 
ties of recursive functions., which are not primitive-recur- 
sive, appear indeed in examples of functions which are.not 
majored by any primitive-recursive functions, is correct. 
But the question of whether it is necessary to separate as 
simplest functions all the primitive recursive functions 
still-remains unclarified to date.  The thesis of A. V. 
kuanetsov casts light on the role of primitive-recursive, 
functions in any algorithmic (realized in accordance with 
definite rules) process of calculation.  It pertains to 
elementary steps, into 'which' this process of calculation 
is broken up but which themselves no longer lend themselves 
to further subdivision, and consist of the following!  the 
rules of the algorithms can always be formulated in such a 
way, that each elementary step consists of a (single) appli- 
cation of such rules of computation (analogues of the rules 
of deduction), of which there is a finite'number and each 
of which is such, that the relation between that which is 

1.  "Recursive Functions," Moscow, Foreign Literature Press, 

.1954-, p. 182. • 
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obtained from a given rulö with that from which we obtain 
it (upon single application of the rule), is (after corres- 
ponding arithmetization) a primitive-recursive predicate. 
The consequence of this thesis * is such:  The length of 
the process of calculation (expressed, for example, by a 
number of symbols, which must be written out during the 
calculations, or by a length of time)1 of a complex-recur- ■ 
sive function in accordance with no matter what type of 
algorithms is not measured by any primitive-recursive func- 
tion.. The unclarified question, which was mentioned above 
(and which was formulated by A. V. Kuznetsov in January 
1949) pertains,to whether it is possible, in the formulation 
of the foregoing thesis, to limit still further the class 
of predicates, corresponding to the elementary (non-divi- 
sable) steps of the calculation.  Its solution was preven- 
ted by the absence of a single visualization of all the 
conceivable .elementary steps of an arbitrary algorithm. At 
the present time such a visualization can be obtained by 
starting with the definition of the algorithm after Eelmo- 
gorov, which will be discussed in the next section. 

4.  Definition of the Algorithm.  General Theory 
of Algorithms 

1.  Church's thesis identifies calculable functions 
with the recursive functions.  However, the concept of a 
recursive function arose not as an indirect reflection of 
the process of calculation itself of the value of the func- 
tion, starting with a system of values of its argument. 
Prom any definition of any kind of recursive function (im- 
plicit, and more so, explicit) it is easy to extract, natu- 
rally a method of constructing the algorith, which converts 
each specified system of values of the arguments (for which 
the function is defined) into corresponding values of the 
function. But the definition of the recursive function is 
in itself not yet an algorith.  Furthermore, not every algo- 

"l7 Reported at the Seminar on Mathematical logic at the 
MOSCOW University in January 1949. 
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rithm (a process performed in accordance with an exact 
prescription and leading from initial data, which may vary, 
to the sought result (A. A. Markov)) pertains directly to 
the calculation of the values of arithmetic functions. 

With the aid of the methods of arithmetization, the 
most important of which is the Goedel arithmetization of 
meta-theories, based on an effective recount of the formal 
objects of theory, it is possible, naturally, to reduce the 
process of the existence (or respectively non-existence) 
of the sought algorithm to the problem of recursiveness 
(respectively, non-recursiveness) of a certain airthmetic 
function. It was exactly in this way that the famous proof 
was obtained (Church, 1936) of non-existence of an algorithm, 
which permits to recognize, from the form of the formula of 
a narrow calculus of predicates, whether this formula can 
be proved in this calculus or not (the problem of resolva- 
bility for a narrow calculus of predicates).  The same me- 
thod was used by A. A. Markov, Post, and others to obtain 
a series of results (which will be discussed in detail in 
Section 9), pertaining to the impossibility of certain algo- 
rithms  in theories of associative systems with integral- 
number mr.trices. 

It is possible to say therefore that the definition 
of the recursive function makes it possible to assign an 
exact meaning if not to the concept of algorithm itself, then 
to statements concerning the existence and particularly the 
non-existence of an algorithm.  From among the other refine- 
ments of the concept of algorithm (through the Turing machine, 
the finite combinatorial process of Post, the definition of 
a computable function with the aid of the Church Ä -conver- 
sion calculus, or, more generally, the definition as a func- ^ 
tion whose values can be derived in a certain logical calculus," 

TT The Russian words !,algorifm,! and "algoritm" are used as 
synonyms. A. A. Markov and his students usually write "algo- 
rifm."  In papers by other authors one encounters more fre- 
quently the spelling "algoritm." 
2.  Including also the definition of the algorithm in terms 
of simulation by finite classes, proposed in 194-9 by B. A. 
Trakhtenbrot £l,  6j  v/hich we shall deal with in Section 12. 
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etc.), the closest to a description of any automatically 
performed process of calculation is the definition of the 
Turing machine; the others either do not satisfy (analo- 
gously to the definition of the recursive function) direc- 
tly tne question »what is an algorith?" or else describe 
directly only certain types of algorithmic processes, which 
are realizable, for example, by means of a machine of defi- 
nite construction. However, one can Judge that even in 
the Turing machine there are not exhibited directly the 
characteristic features of any effective automatic process, 
performed in accordance with a definite program of action 
on initial data that are capable of varying, at least from 
the fact that the proof of the equivalence of other detim- 
tions of the algorithm to the definition with the aid of 
the Turing machine requires sometimes great cleverness.  In 
this connection, the need arises naturally for giving sucn 
a definition (sufficiently accurate, so it be useable in 
mathematics) of an algorithm, which would be free of all 
these shortcomings.       '_  _  ' 

In 1951 A. A. Markov / XlJ  proposed a refinement 
of the concept of algorithm (»normal algorithms-' of A. A. 
Markov), based on the representation of constructive objects 
of mathematics in the form of words in a certain fmite 
alühabe,1- and programs of action of the algorithm in the 
form of a list of prescriptions written in a definite se- 
quence, requiring the replacement in an already available 
word of the first entrance of some word P on to a word y. 

The exact definition of normal algorithm proposed 
by A. A, Markov is constructed, on the basis of the follow- 
ing three characteristic features of any algorithm {£ W.J, 

p. 176)» , . . 
a) The presence of an exact prescription, which 

leaves no place for arbitrariness in the known generally 
accepted sense — determiniteness of the algorithm.    _ 

b) Possibility of starting with initial data that 
can vary within certain limits — mass nature of the algo- 

~ If the~Hphabet contains ten Arabic numbers, then the 
writing of the number .in decimal system is also a word in 

this alphabet. 
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rithm. . 
c)  The trend of the algorithm towards obtaining a 

certain sought result, the final analysis obtained under 
suitable initial data - resultativeness of the algorithm. 

• Another principal these, from which A. A. Markov 
starts, consists of the fact that vLahy computing process, 
used in mathematics, reduced to a certain potentially rea- 
lizable process of successive transformation of words in 
a suitable alphabet1' (/ 41_/, p. 180). 

Even closer to any real process of calculation, 
realized by any sum of computing mechanism, is the defini- 
tion of the algorithm proposed in  the winter of 1951 
1952 by A. N. Kolmogorov £\?5j\ ■■  A student of Kolmogorov, 
V. A, Uspenskiy, refined for the first time (1955) a con- 
cept of a program (algorithm) independent of the choice of 
the definition of the algorithm, as'will be discussed in 
Section 5.  The best developed at the present time is the 
theory of normal algorithms of Markov. We shall start with 
this theory the evaluation of the work of Soviet mathemati- 
cians, devoted to a refinement of the concept of the algo- 
rithm and the general theory of algorithms. 

2. Markov's theory of algorithms_has been expounded 
in all its details in a large book / 4-8_y. A clear and 
accessible brief exposition of this theory is contained in 
the article [_  41, 46./. The best that we could do here in 
order to explain the contents of this theory, would be to 
restate these articles by A. A, Markov. We therefore think 
it better to refer the reader to them directly. * . We shall 
dwell only on the follwing instances here. 

a)Inasmuch as A. A. Markov starts with the fact that 
any algorithmic process used in mathematics consists of con- 
verting words in a certain alphabet into words, . he dwells 

1. A good explanation of the contents of the book of A. 
A. Markov / 48_/ can be found by the reader also in the 
review of N. A. Shanin (Referat Zhur Matematika, 1956, 
Abstract No. 2716. 
2. If the prescriptions of the algorithm are such that they 
cause an unlimited continuation of the reprocessing of the 
word: P, then the algorithm is considered as unapplicable (cont.) 
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in detail on a general description of the symbol of the 
alphabet ("letter") and the ;;abstract letter" and to a 
"word" compiled of such symbols as the constructive objects, 
in the Construction of which ah important role is played 
only by the proposition that it is possible to distinguish 
strictly and to identify the initial objects ("abstraction 
of identification") and to create from them words of any 
desired length ("abstraction of potential realizability"). 

The abstraction of actual infinity is not admitted, 
Por what is coming, it is important to distinguish between 
the terms "algorithm in the alphabet A" (under which is 
meant "a generally understood prescription, which deter- 
mines the potentially realizable jDrocess on abstract words 
in A, starting with any word A" / 4-l„/, P« 180), and "an 
algorithm on the alphabet A", i.e., an algorithm in a cer- 
tain alphabet containing A. 

b) The normal algorithms of A. A. Markov are speci- 
fied by schemes of substitutions, i.e., by a list of elemen- 
tary operations of local character arranged in a definite 
sequence and performed on words (the "locality" of the ope- 
ration consists of the fact that the latter touches only on 
a given type of a section of the converted v/ord). 

c) The question as to what extent the exact concept 
of a normal algorithm corresponds to the previously-formu- 
lated general concept and to the not jguite exact concept of 
the algorithm in a given alphabet" (/ fl_/, p. 183, and 
here, Section 1) the answer is given in the form of the 
following principle of normalization of algorithms;  any 
algorithm in the alphabet A is fully equivalent_with respect 
to   A to a certain normal algorith on A / 4-8_/. In con- 
firming the correctness of this statement many proofs are 
brought, of which the most important consists of the fact 

(Footnote 2, on pg« 4-8 cont.) ...to the word P.  In this 
connection one can say that the algorithm is a partial func- 
tion, pertaining to the words of the word. 
1.  Two algorithms are fully equivalent relative to the 
alphabet A, if every time that one of these processes a 
certain word P into A into a word Q, the other does the 
same. 
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that "all the algorithms thus far known^in mathematics ar> 
equivalent to ncrmal algorithms" (/ 4-Ly, p. 183). Also 
in favor of this statement are many theorems on different 
combinations of normal algorithms. The algorithm obtained 
as a result of such combinations always is found to be 
equivalent to a certain normal algorithm. 

d) Inasmuch as the scheme -of prescriptions that 
specifies a certain normal algorithm in alphabet A can 
itself be written in the form of a word in a certain 
alphabet, then it becomes possible to construct a univer- 
sal normal algorithm, the application of which to a word 
representing a pair of words: 1) writing ("image") of a 
normal algorithm $ in the alphabet A, and 2) a word P 
in the same alphabet gives the same as the application of 
the algorithm *■ to the word P. This theorem on the uni- 
versal algorithm serves as a base for many proofs of 
impossibility of algorithms. With its aid it is proved 
above all (by means of ■ an argument similar to the "diago- 
nal method" of G. Cantor), that it is impossible to have 
a normal algorithm on an alphabet A. (consisting of a pair 
of letters (a, b)), recognizing the non-self-applicability 
of the algorithm (i.e., applicable to those and only to 
those recordings of normal algorithms in A, which are 
recordings' of algorithms which are not applicable to their 
own recording). Theorems of this type indeed serve, as a 
starting point for the second part of the book £  ^8_/» de- 
voted to the proof (by now using the means of the general 
theory of normal algorithms) of the non-solvability of 
several algorithmic problems of algebra, * above all the 
theory of associative calculus. 

(The associative types of calculus are related with 
the normal algorithms by means of the following theorem: 
"No matter what a normal algorithm %    in the alphabet A, 
it is possible to construct such anassociative calculus ' 
$  on the alphabet 9Uf£,ß*T} (here a&y are letters 

that do not enter into A), that the equality '.'%(P)w*Q 
will take place for the words P and Q in the alphabet A 
when and only when fmPp    is equivalent to  ^0  in "fclle 

1. That is, the proof of non-existence of certain algo- 
rithms. 
2. * (P) denotes of the result of the application of the 
algorithm ,* to the word P (if such exists). 
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calculus 9 " £  48_y, p, 208.)  Translated into the Ian- f 

guage of the theory of recursive functions, this means, 
approximately, that the" set of proved equivalences of 
associative calculus is recursively .enumerable, but not 
necessarity recursive by all means, and therefore the 
problem of solvability in general case is not solved for 
it.) 

3. The proof of the equivalence of the principle ,;... 
of normalisation of A. A. Markov and Church's thesis on 
the coincidence of the concepts of effective calculabi- 
lity in the general recursiveness was first obtained by 
W K. Letlov3 /.!_/»    V. K. Detlovs writes the natural 
numbers in alphabet V}-   and the ordered groups of n of 
the natural numbers in the alphabet C « {1,»} .  The word 

*',*...*xK     in this notation an ordered n group •<«,•• «.*H . 
The function <^ (xt,... ,*„)  is called algorithmic 

if there exists a normal algorithm %     on the alphabet 
0 such that 

The symbol  rac denotes that if one of the parts of the 
formula makes sense, then the other one also makes sense, 
and both are then equal to each other.  If both parts of 
the formula make sense (and are equal) for all groups of 
n of the natural numbers, then the function is called 
fully algorithmic. 

The principal result of V. K. Detlovs consists of 
that the contents of the ooncepts "algorithmic" and "par- 
tially recursive" (functions) coincide. Equally identical 
are the volumes of the concepts "fully algorithmic" and 
"generally recursive," functions. * 

Other participants in the Seminar on "Mathematical 
Logic at the Leningrad Division of the Mathematical Insti- 
tute imeni V. A, Steklov, namely, N. M. Nagornyy, 13. 3. 
Orlovskiy, G.. S. Tseytin (students of A. A. Markov), 

1.  The paper of V, K. Detlovs was ptiblished, together 
with complete proofs, "Equivalence of Eormal Algorithms 
and Recursive Functions-" and those mentioned later, in 
the collection of paper of the Leningrad_Jäeminar on Mathe- 
matical Logics (Trudy MIKE  im. Steklova / Works of the 
.Mathematics Institute of the Academy of Sciences imeni ..: 
SteklovJ/ 52). 
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""obtained many results pertaining to a further development 
of the theory of normal_algorithms. 

In the note flj,  U.K. Nagornyy (1953) strength- 
end the theorem Droved by Markov concerning the reduction 
of normal algorithms, according to which any normal algo- 
rithms on a certain alphabet can be replaced by an equi- 
valent (with respect to A) normal-algorithm in a merely 
two-letter expansion of the alphabet A. K. M. tfagornyy .„ 
has shown that it is possible to confine oneself also to 
a one-letter expansion, but to go without eny expansion 
of the alphabet at all it is impossible for normal algo- 
rithms in the general case.  (This is possible for Turing 
machines, where the empty place, between words can be used 
as a separate symbol1*.) Thus,' in particular, a doubling 
normal algorithm on A is not equivalent relative to A to 
any normal algorithm in A.  This, as proved later on by 
N. M. Hagornyy L J>J  is found to be generally true for 
any normal algorithm which stretches words (by a iactor 
of several times).  _ _ . .     . 

In reference / 2.J  (which is expounded m detail 
in /~4 7) N. M. Nagornyy considered certain, generalize- 
tions of the concept of normal algorithms.  The principal 
feat-ore of the algorithms considered by him consist oi 
that each step of the work of the algorithm is not only 
developed a certain word, but a scheme is indicated, which 
must be applied in the next step. For the simplest of 
these generalizations — for algorithms of type or, , as 
they are called by the author, it is particularly easy to 
construct concrete algorithms and the author proves theo- 
rems on tne composition of algorithms: formation of com- 
plex algorithms from those already available.  Ine equi- 
valents proved by the author of the concepts of algo- 
rithms of the types considered by him to the concept oi 
the normal algorithm (which is in itself of interest as a 
supplementary argument in favor of the principle of nor- 
malization) makes it possible to use a^orit^p^

P^ 
« for simplification of the proof of many theorems on 

1 kis result was reported at the Session of the Semi- 
nar on Mathematical Logic at the Moscow university in 
April 1957.  It is published in the journal Seitschnlt 
.Math. Logik u. Grundlagen Math. 
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the composition of normal algorithms. 
In a diploma thesis, V. S. Chernyavskiy ' considered 

a subclass in the class of normal algorithms, consisting 
of algorithms which he called a "shuttle" algorithm, and 
for which he proved that any normal algorithm in the alpha- 
bet A is equivalent relative to A to a certain shuttle al- 
gorithm on A. By virtue of this equivalence the theory of 
normal algorithms can "be reduced to the theory of shuttle 
algorithms, in which a series of theorems (particularly on 
the composition of algorithms, on the equivalence (in a 
definite sense) of the definition of the shuttle algorithm 
to the definition of the Turing machine, and on the univer- 
sal algorithm) are proved more simply (and more uniformly) 
than in the general theory of normal algorithms. 

In the list of prescriptions, which specify the nor- 
mal Markov algorithm, individual prescriptions (steps of 
the algorithm) can he of quite different difficulty: for 
their performance it may be necessary to have as long a 
time interval as convenient (this will take place, for 
example, if we deal with ever lengthening words, in which 
we must search consecutively the first entrance of any de- 
finite words or to verify the non-existence of such entran- 
ces). 

A table of prescriptions defining a shuttle algo- 
rithm is used at each step to indicate directly a section 
of the word, subject to transformation, and this section 
consists always of not more than two letters. The indivi- 
dual steps in shuttle algorithms are thus (in principle) 
all of the sane difficulty. 

Shuttle algorithms are readily interpreted in the 
form of a process that is realized by a machine of special 
type or by a living being, i.e., satisfy the requirement 
that is imposed on a good definition of an algorithm, that 
this definition directly reflect the course of the perfor- 
mance of the algorithmic process. 

4. An estimate of the number of steps in the use of 
a normal algorithm of Markov, as applied to any word in a 
given alphabet, was the subject of a paper by G. S. Tseytin, 

T. In 'pre s sT~ 
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reported by him at two Sessions of the Seminar on Mathe- ~l 
matical Logic at the Koseow university (14- November and 
21 November 1956). . 

Introducing natural (inductive) definition of the 
function V^IJP). "*~" the number of steps .in-the application 
of the algorithm K to the word P (up to termination of 
the process of conversion of this word), G. S. Tseytin 
shows above all that for all: alphabets A and (always 
applicable) algorithm %    on A, and for any n there exists 
such an algorithm * on A, equivalent to the relative 
algorithm 9    on A, that for any work P in the alphabet 
A •       .        - -  

(Here I**     is the length of the word P). 
Inasmuch as the problem of the estimate of the num- 

ber of steps is posed not for the algorith, but for the 
algorithmic function (obtained as a result of identifica- ' 
tion Of the equivalent algorithms), where,by the estimate 
is carried, out for those (of the equivalent) algorithms, 
the application of' which requires the smallest possible 
number of steps, it is clear from the foregoing theorem 
that the only thing of interest is an estimate of the 
order of the rate of growth ot the number of steps of the 
algorithm as the length of the word processed by it is 
increased. 

Since in any finite alphabet A there exists only a' 
finite number of words, the length of which,does not ex- 
ceed a given number n^ then for each algorithm 3f in the 
alphabet A it is easy to construct an algorithm ti%   such 
that 

'/V»(*)** max &(», /*). 

It is thus found that. if.; n /V* (n) grows without limit with 
increasing n, then N% (») ' grows not slower, than a certain 
linear function of n (i.e., it cannot grow, for example, as 
log n or any similar function, which grows flower than any 
linear function). , 

We shall employ the term "regulator"' to non-diminish- 
ing functions of integers with, integral values (more accu- 
rately, normal algorithms defining such functions). Then 
one can naturally say that the number of steps of an 
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algorithmic function iß majored by regulator f, if for  i 

any algorithm %   , corresponding to this function, the 
number of steps-is majored by f (i.e., VVflf(»}</(n).  > ■" 
starting ■with.a certain n). In order to exclude the pos- 
sibility of a trivial estimate of the number of steps of 
an algorithmic function, based on the length of the word, 
which is the value of this function, we shall consider 
such algorithmic functions, which can assume only two 
different values (algorithmic predicates). "We shall say 
that the regulator f is "stronger15 than the regulator f, 
if there exists an algorithmic predicate, the number of 
steps of which is majored by f,, but is not measured by 
f. Then the last result shows that iff is a constant 
and f_ is "stronger" than f, then f. increases not slower 
than a linear function, i.e., we have here a "jump" from 
a constant to a linear function. For regulators, on the 
other hand, which increase no slower than the linear 
function, the situation is quite different, as shown by 
the following theorem» 

Theorem. Let there be given regulators f and f , 
with • /(*)>» and  <p(»)~^oa  . Then it is possible to 
construct an algorithmic predicate, the number of steps 
of which is not majored by f, but is majored by the regu- 
lator    ' ■    '   . 

Dispensing with second-order terms, we can indi- 
cate thus that if f increases not slower than the linear 
functions, and f   increases without limit (although no 
matter how slowly), the regulator J(n)-(log«/(jt)]<?(/t) 'is 
"stronger" than the regulator f. 

5. As already noted, at the present time there 
are known many definitions of the algorithms, which have 
a sufficient degree of clarity and generality for mathe- 
matical purposes, but at the same time are neither direct 
refinements of the intuitive concept of the algorithm, or 
else describe only a certain definite class of algorithms: 
the thesis connected with each of these definitions and 
which-states that each mathematical algorithm is equiva- 
lent to a certain definite class of algorithms, is based 
most convincingly on the fact that all these different 
definitions of the algorithm are found to.be equivalent... 
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Gould one however give a definition of the algorithm    : 

which would refine directly the very idea of the algorith- 
mic process in general (and not only a certain particular 
type of these processes)? 

Such a definition of the algorithm was proposed by , 
A. H. Kolmogorov £  135_/. This definition is based on the 
idea of the algorithmic computability, which differs from 

, the computability by means of ordinary (real) computing ; 

mechanism only in the unlimited volume of the "memory." 
In the algorithm of A. IT. Kolmogorov the problem 

is specified in the form of a one-dimensional topological 
complex, and the solution is also obtained in the form of 
a complex, whereas each step of the algorithmic process 
consists of processing one complex into another in accord- 
ance with definite rules of processing, which touch, gene- 
rally speaking, not the entire complex, but only the sur- 
veyable part, the value of which cannot exceed a previ- 
ously established limit. 

Since from the definition of the computable func- 
tion one can always extract a definition of the algorithm 
(which realizes the calculation of the values of the func- 
tion, starting with values of its arguments), so also,'to 
the contrary, a definition of an algorithmic function cor- 
responds to any definition of the algorithm. 

By virtue of the generality of the definition of 
the algorithm in the sense of Kolmogorov, one writes auto- 
matically in his terms all other definitions of the algo- 
rithm, or more accurately, the algorithms in the sense of 
other definitions;'with its aid it is easier to prove many 
general properties of algorithms and algorithmic functions 
in general. 

At the same, time, the algorithm of A. N. Kolmogorov, 
as expected, for all its generality, is not broader than 
the ordinary partially-recursive functions. Actually, to 
each  II -complex (complex with a surveyable portion seg- 
regated in it in a definite manner) one can place in cor- 
respondence effectively and mutually uniquely a natural 
number.  The function  £~D(ff) (which relates complexes 
to complexes and generally speaking, which is not every- 
where defined) therefore induces in the natural series the 
function '"»tf*) (which also, generally speaking, is not 
.everywhere defined). With this, as shown by ?. A. 
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Uspenskiy, IfJUO  is,an algorithmic function, then    ! 
jfi}is a partially recursive function.; The inverse, 
true, is not directed correct,, since.not for every par- 
tially-recursive function ti*> there exists corresponding 
algorithmic functionIff!) (thus, in the general case 
T|JQ does not exist, if tfA) is ^iaed on ^J® entire 

set "of number of complexes). V.: .A.- Uspenskiy * has shown, 
that nevertheless for any function in the natural series , 

; iito   one can still find a representative ¥(£}   which is^ 
furthermore a very natural one) among the functions of 
the complexes in such a way, that if T(*> is a partially . 
recursive function, then ffcf) is an algorithmic function. 

The equivalence of the"definition of the algorithms 
of A. II. Kolmogorov to the definition of the computable 
function as a partially recursive one, and thereby to 
other known' definitions of the -algorithm,was thus proved 
by V. A. Uspenskiy. 

:5./ Enumerable ^Countable/ Sets and Computable 
Operations on Sets 

General Concepts of Enumeration and Programs. 

The'theory of enumerable or, as they are otherwise 
called, recursive-enumerable sets is of particularly great 
significance for mathematic logic and meta-mathematics. 
Enumerable sets correspond in their.content to sets of 
constructive objects, which are generated by some effec- 
tive regular procedure.  In order to be able to speak of 
a certain object, it is necessary to assign a name'to 
this object. When we .speak of constructive objects, their 
names can always be made in the form of'natural numbers: 
the numbers of these objects in any kind of system of enu- 
meration.  In the theory of enumerable sets one can there- 
fore confine oneself to a study of the natural series of 
numbers and its s-dimenaional generalizations. If the con- 
cept of a computable function (which has natural numbers 
both for its arguments and its values) is assumed to be 

TI V. A.- Uspenskiy. General. Definition of the Algorith- 
mic Computabillty and Algorithmic Reducibility. Diploma 
paper, 1952. 
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already specified and refined (in the sense, for example, 
of the algorithmic or partially-recursive function), then 
the enumerable subset of a natural series can be defined 
as a set of values of a computable function. In general, 
an arithmetic function is computable when and only when 
its graph is an enumerable set* 

The theory of enumerable sets includes thus, the 
theory of computable functions, meaning also the theory of 
algorithms. Furthermore, this theory covers also the cons- 
tructive operation with non-constructive objects, with which 
we deal, for example, in models of formal deductive theories, 
which are constructed on the basis of a narrow calculus of 
predicates: the set of proved premises of such theories is 
enumerable. In general, if the names (which are usually 
constructive objects) of certain (even though actually in- 
finite) sets are effectively constructed successively from 
names of certain initial sets (the latter can also actually 
be infinite), then the set of names obtained thereby will 
be (in contents) and enumerable set (in the refinement of 
the method of selection of the names and the meanings with 
which the "effectiveness" of construction is meant, one can 
say of a set of names which is already enumerable in the 
corresponding exact meaning.) The choice of names is rea- 
lized here by specifying the method of numbering (a parti- 
cular role in numbering is played by so-called Goedel num- 
berings). The question naturally arises of how to choose 
the names of the objects in such a manner, so that the rela- 
tions between the names reflect the relations between the 
objects designated by the names, and to what extent is this 
in general (without changing the names) possible. Of parti- 
cular interest is this problem in those cases when the 
names pertain to non-constructive objects (and the transi- 
tion from the object to its name denotes a certain construc- 
tivization of the object). Essentially all problems of the 
foundation of mathematics are connected with problems of 
this kind. D. Hubert hoped that it is possible to have 
such a method of transition from non-constructive (actually 
infinite) objects to constructive "names" that denote these 
objects, for which the relations between the names will 
reflect all the properties (and relations) of the objects 
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themselves. As is known, these hopes by Hilbert were found 
to be unfounded,  v/hat is the matter? The works by V. A» 
Uspenskiy /~6 — 9, 12, 14_/ ' on the theory of enumerable 
sets and computable operations on sets are devoted to a 
circle of problems connected with questions of this kind 
and we shall proceed now to a discussion of some of them. 

2k    We shall begin the survey of these works by 
V. A* Uspenskiy with problems pertaining'to the general 
treatment of methods of numeration« . We Already mentioned 
the significance that Goedel numeration of certain sets of 
objects has in mathematical logic and in mathematics. The 
essence of this measure consists of arithmetization realized 
with its means: in that by means of it'problems concerning 
the properties of certain objects are converted into arith- 
metical problems concerning the properties of numbers, 
which are names of these objects (in the given numeration). 
It is clear, however, that not every numeration can permit 
a deduction of any properties (or relations of the objects 
themselves from relations between the names of the objects, 
what then is the secret of the success of the Goedel nume- 
ration? In papers /~7, 9, 12, 14-J7 V. A. Uspenskiy * answers 
this question. He introduces the concept of the computable 
numeration of a system of sets (a particular case of which 
is the computable numeration of a system of functions) and 
covering numeration (in a certain sense containing in itself 
any other numeration) and explains that the presence of 
both of these properties in Goedel numerations indeed is 
the cause of the important role of the latter in the theory 
of computable functions and enumerable sets. 

From among the number of concrete results, pertain- 
ing to the concept of computable numeration, let us men- 
tion the theorem proved by V. A. Uspenskiy already in 1951 
(see jfm-J,  p. 160), that a system of all infinite 

l7 *See also V, A. Uspenskiy, on operations over enumerable 
sets, dissertation, 1955» 
2. The enumeration of a set M is called an arbitrary 
reflection < of an arbitrary set E of natural numbers 
on M. 
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enumerable sets of natural numbers does not admit not_only 
a Goedel, * but in general no computable numeration / 7, 
V±J  * and that the situation is the- same for a system of 
all infinite resolvable sets of natural numbers. 

3. The idea of an abstract«study of numerations, 
in the development of which V. A. UjSpenskiy engaged under 
the influence of A, N, Kolmogorov, has led V. A, Uspenskiy 
to introduce into the theory of computable functions (we 
recall that a computable function is considered as a 
graph, is a particular case of an enumerable set) a gene- 
ral concept of a program of function (and a method of pro- 
gramming of computable functions), independently of any _ 
particular refinement of the concept of the algorithms [^  7, 
9, 12_y. ' The program as a record in a certain code of ,a 
set of rules, defining the algorithm, is naturally related 
both with the given algorithm'and with the choice of the , 
code. The refinement of the concept of a program appears 
to be, therefore, at first glance to be dependent on the 
refinement of the concept of the algorithm. But any algo- 
rithm specifies a certain computable function (defined on 
the set of these objects to which it is applicable. On the 
other hand the concept of computable functions is indepen- 
dent of the method of refinement of the concept of the 
algorithm: any of the known refinements of the concept of 
the algorithm leads to the same class of computable func- 
tions. Independent of the refinement of the concept of the 
algorithm, the concept of its program can therefore be com- 
puted and obtained starting v/ith the concept of the compu- 
table function. It is precisely in this way that V. A. 
Uspenskiy proceeds. 

Inasmuoh as any program is a word in a certain al- 
phabet, and words in a given alphabet can be effectively 
renumbered with natural numbers, then without loss of gene- 
rality one can assume that programs are natural numbers, 

1. The non-enumerability of a set of Goedel numbers of all 
infinite enumerable sets was proved in 1953 by Reis. 
2. See also V. A. Uspenskiy, on operation on enumerable 
sets, dissertation, 1955. 
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and ©ach method of programming (method of formalization ~~\ 
of a set of rules, defining the computable functions) is 
a certain numeration of a system of computable functions. 
We deal consequently with the fact that from among all 
the possible numerations of this system we want to sepa- 
rate those, which appear1 to be methods of programming. 
Introducing the concept of potentially computable and 

., fully, covering numerations V. A. Uspenskiy defines the 
method of programming as a numeration that is simultane- 
ously potentially computable and_fully covering, and he 
gives convincing arguments /"*12_/ in favor of the fact, 
that any method of programming is actually a numeration 
of this kind. Under a "program" of a function (for a 
given method of programming) is meant in this case the 
number of that function in the numeration, representing 
the given method of programming. 

4. In connection with conditional algorithms1,' 
or, as we shall call: them sometimes, algorithms of redu- 
cibility, which are of particular interest for the theory 
of enumerable sets and problems of reducibility, great 
significance attaches to computable (in other words — 
partially recursive) operators, defined on the system of 
all arithmetic functions, and converting the sets of 
arithmetic"functions into arithmetic functions. 

To any computable operator there corresponds an 
algorithm (conditional), which permits (if for example we 
deal with a computable operator P, which convers a single- 
phase arithmetic function ^> into a single-place arith- 
metic <p ), in accordance with the defined program, to 
establish for each X  those values of the argument of 
the function $    , for which information on the func- 
tion (plX)ma.j  be suitable for the calculation of Ä   , 
and to oalcülate f(X)    if this information is accessible 
(i.e., if the machine (algorithm) has at its disposal 
equations of the type 4 CX{) ~ y$   , where X{ ■  . ähdjfr 
are the recorded necessary values of X%   and (j> (Xi     ). 
Concerning the computable operator PI one can therefore 
say that, if all the information on the function j>    (all 
the equations of the type f(x)^}J   are ffvilable, 'it makes 
possible to derive all the information concerning the 

1. Concerning these, see Section 6, Item 2. 
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function p   ,."(all the equations of the typep9(X'sy    ). ; 
Any computable function will therefore be converted by 
this operator into a computable function. But computable 
functions can be characterized by their programs, i.e;, 
by numbers in a certain numeration» It is natural to ex- 
pect therefore that each computable operator induoes a 
certain computable function, which relates the numbers 

.; (programs) of the functions that they can process with 
1 the numbers (programs) of the results of the processing 
in the case when the processed functions are computable. 
The operator defines for computable functions and which 
converts the latter into computable functions is called by 
V. A. Uspenskiy /~12_7 a constructive operator, if it in- 
duces the foregoing computable function, relating the pro- 
grams of the functions. As expected, any operator defined 
for computable functions and continued to a computable 
operator.(defined for all arithmetic functions)is cons- 
tructive1* /~9, 7, I2J?. Por the particular gase of 
Goedel numbers this theorem was known before. * It was 
found that the inverse was also true. ' Indeed, any cons- 
tructive operator is continued to a computable operator. 
The "program" of a function (in the sense of T. A. Uspen- 
skiy) is thus found to be so good a name for it that it 
yields, from the effectiveness of construction of such a 
name of function f from names of other functions, conclu- 
sions concerning the effectiveness of the calculation of 
f on the basis of information concerning these other 
functions. 

A theorem analogous to that of V. A. Uspenskiy, for 
the particular case of operators which convert general- 
recursive functions into a general-recursive ones, and 
specially Goedel numerations of functions, was proved by 
G. S. Tseytin £lj. 

At the same time, even with the aid of so good a 
name for a computable function as its «program» (in the 

IT V. A. Uspenskiy. On Operations Over Enumerable Sets. 
Dissertation, 1955. 
2. See S. 0. Kleene,* Introduction into Meta-Mathematics, 
Moscow, Foreign Literature Press, 1957 (henceforth fre- 
quently cited as "Kleene (Meta-mathematics)), p. 308, 
theorem XXIV (c). 
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sense of V, A. Uspenskiy), it is impossible to represent 
fully the properties of the function itself: there exists 
no algorithm which permits to establish from the program 
of the function whether this function has a given property 
or hot (A more accurate a general femulation jOf this theo- 
rem can be found in the papers / lj  and /_ \2j  of V* A. 
Uspenskiy)Y ;        ' 

5. All the above-mentioned results and concepts, 
pertaining to the general theory of numerations, programs, 
and computable operators, were obtained by V. A. Uspenskiy 
in the general theory he constructed for systems^of enume- 
rable sets and computable operations on sets * £ 6, 7_/* 
(In particular, a computable operator is a particular case 
of a computable operation on sets — on graphs of functions.) 

In the definition he proposed for a computable ope- 
ration, V. A v Uspenskiy undertook to cover all types of 
such operations, which convert successively (with admission 
of a transition to the limit) starting with finite subsets 
(Corteges), enumerable sets or aggregates of .sets,in enume- 
rable sets. As shown by V. A. Uspenskiy / 6_/, for these 
operations it becomes possible to have also certain other 
definitions, based on the concept gf operations of A, N. 
Kolmogorov'and operations of Post. * But the definition of 
V. A. Uspenskiy is convenient because it exhibits a connec- 
tion between the computable operations and the continuous 
representations, and therefore can serve as an instrument 
for constructivization of mathematical analysis (see 
Section 10). 

?. A. Uspenskiy considers systems of enumerable sets 
as topolbgical spaces. Although these spaces are found to 
be sufficiently "poor11 TQ spaces, V. A. Uspenskiy succeeds, 
by introducing the concept of if* -density, to transfer to 
them, mutatis mutandis (when the term "everywhere dense" 
is replaced by " *C -dense"), the theorem that two continuous 

1. V, A. Uspenskiy, On Operations Over Enumerable Sets, 
Dissertation, 1955. 
2. E. I. Post, American Journal of Mathematics, 65 (1945) 
197 and Bulletin of American Mathematical Society, 54, No. 
7 (194-8), 641. 
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representations of ä topological space X into a topologi- 
cal space Y coinciding on a certain everywhere dense sub- 
set of the space X, coincide also on all X. With the aid 
of this theorem he indeed proves the assumptions given in 
item 3 concerning computable and constructive operators (a 
computable operator is a special'txpe'of continuous repre- 
sentation of the function space) £  6* 12J*    The theorem 
mentioned in the same item 3, concerning the indistingui- 
shability of the properties of a function from its program, 
is a simple consequence of the topological connectivity of 
the system of computable functions /l2_/. , 

S.    Definitions of the Mass Problem and of  .. 
: Algorithmic Reducibility of Mass Problems. • 

Structure of Degrees of Difficulty. ., 

1. Algorithms are sought in mathematics as general 
methods of effective solution of.any (single) problem of a 
definite kind.  The broader the class of problems solved by 
means of a certain algorithm, the greater usually the value 
of this algorithm. In searches for a general-and effective 
method of solving broader and broader and more varied clas- 
ses of problems, lies, essentially, the history of mathema- 
tics. The need for a general definition and a general the- 
ory of algorithms has also arisen in connection with sear- 
ches for algorithms for a solution of certain classes of 
problems, the stubborn lack of success in which (these 
searches) should give rise to suspicion concerning the gene- 
ral non-realizability of the sought algorithm. Thus, in 
connection with an algorithm one naturally considers the 
class of problems which it admittedly can solve. Since any 
finite number of single problems can always be considered 
as a (more complex) single problem, then interest attaches 
only to the case of an infinite class of problems. In this 
case, hov/ever, one can also speak of a single — mass —. 
problem, the solution of which should indeed, consist of 
finding the algorithm. 

The first definition of a mass problem connected with 
the refinement of the statement of the problem pi  existence 
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or non-existence of an algorithm, which would recognize the 
presence or absence of a Certain property in objects^of a 
definite kind, was proposed by A. A. Markov. He (/ 48^/, 
Chapter V) gives the name of "mass problems" to problems 
of the following type. 

We consider a certain class of single problems, each 
of which is a problem that requires a positive or negative 
answer. Ihe problem is raised of finding a single general 
constructive method of finding the correct solution for any 
single problem of the considered class. This formulation 
is refined later on by replacing the term "single general 
constructive method" by the term "algorithm." A require- 
ment is imposed in this case on the algorithm, that it be 
applicable for the recording of any single problem of the 
considerec class * and that it convert this recording into 
a word "yes" ,(or into some analogue of this word, for 
example, an empty word). If the problem is solved in the 
positive sense, and into the word "no" for some of its ana- 
logues,; say a non-empty word), when it is solved in the 
negative meaning. The use of the principle of normaliza- 
tion of algorithms permits an even greater refinement of 
this formulation of the problem,: by formulating a defini- 
tion of a mass problem for a given class of single problems 
as the problem of constructing a normal algorithm on  an 
alphabe of recordings of considered single problems, on 
an alphabet of recordings of the considered single problems, 
which converts the recording of the single problem into, an 
empty word if and only if this problem is solved in the 
positive sense,  fhe mass problems so stated are called by 
A. A. Markov normal mass problems. 

, The problem consisting of searching an algorithm, 
which would permit for any given object of a definite kind 
to solve the problem whether this object has a given pro- 
perty S (whether it belongs to a given set M) or not, is 
called usually the problem of solvability. Mass problems 
in the sense of A. A. Markov are thus problems of solvabi- 
lity. In the more general sense, the mass problem is 
defined (together with its solution) by a student of 

1. That is, it would be a non-partial algorithm, 
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A. N. Kolmogorv, Yu. Üi Medvedev £  5, sj■*■""■ 
With any solvability problem, P there is an associa- 

ted function f- — a characteristic function of the set M 
of objects, having the property of interest to us in the 
particular problem. Medvedev considers the case when (with 
the aid, for example, of arithmetization methods) this 
function can be assumed to be arithmetic and furthermore 
defined over the entire natural series of numbers (recall 
that the mass problem is formulated for an infinite class 
of objects). The solvability of the problem P is naturally 
defined.in this case with the general^recursiveness of the 
function f. 

Matters are somewhat different in the case of the 
so-called problems of enumerability. The enumerability 
problem of a set M is called the problem of relating to 
each number n an element of the set M, i.e., to construct 
a function f of natural numbers, the values of which would 
be the names (and furthermore all of them) of the elements 
of the set M. If one uses as such names natural numbers, 
then the sought function f will again be arithmetic (nume- 
rical), defined over the entire natural series. But if the 
set M contains more than one element, then the conditions 
of the problem are known to be satisfied by an infinite 
set of functions (defined everywhere) f. If one refines 
the statement of the problem and requires ah effective me- 
thod for solving the problem, then it is natural to consi- 
der the problem of enumerability of the set M to be solvable, 
if in the corresponding class of function f corresponding 
to it there is at least one general-recursive function. 

A somewhat more unique situation prevails for the 
so-called problems of separability. Under the separability 
problem of two sets P and Q (we shall presuppose right away 
that they are sets of natural numbers) one has in mind a 
problem, the statement of which can be refined, for example, 
as follows: find an arithmetic function f, defined over 
the entire natural series (the natural series we denote 

1. See also Yu. 'J?. Medvedev, Degrees of Difficulties of 
Mass Problems, Self-Abstract of Dissertation, Moscow, 
1955. 
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henceforth by the letter N), which would satisfy the  "~i 
following requirements: a) if .»€#, then f(n) = 1; 
b) if *C0.,. then f(n) = 0.   It is clear that if the 
sets P and Q do not have common elements, but are comple- 
ments of each other, then the class A of the function 
satisfying the conditions of the problem contains one 
unique function; if PQQ^Q      , but PUQ+N       , then 
the Glass A is infinite, but if PQ&&& , it is empty. A 
further refinement of the statement of the problem in 
connection with the requirement of effectiveness of its 
solution leads again to an identification of the solva- 
bility of the problem with the general-recursiveness of 
at least one of the functions HA  . 

One can cite also many other examples of various 
types of problems of the same kind, which exist - each 
separately - in mathematios, not simply as a class or 
series of unique problems, but as one special problem of . 
finding an everywhere-defined arithmetio function, sa- 
tisfying required conditions, whereby the effectiveness 
of solution of this problem is understood in the sense 
of the general-recursiveness of the sought function. It 
was precisely this kind of problem that Yu. T. Medvedev 
proposed to call mass problems, 

Inasmuch as a mass problem in the sense of Yü. T. 
Medvedev always corresponds to a class ifl ' of functions 
which are its "solutions" and, to the contrary, each 
class A of functions of a natural argument with natural 
values values defines a mass problem: constructive func- 
tion £j , then Yu. T. Medvedev/*5, 6_/  identifies 
the mass problem with a class of functions, defined over 
the entire natural series, the values of which are also 
natural numbers. The problem A**{fi   is called solvable 
if there exists a general-recursive function fcA    , and 
unsolvable in the opposite case. The problem A is called 
proper if the class A is empty. 

2. The algorithms constructed by mathematicians 
to solve entire classes of functions (or corresponding 
mass problems corresponding to such* classes) do not have 
by far always an.absolute character. Just as the solution 

1. See also Yu. T. Medvedev, Degrees of Difficulty of 
Mass Problems, Abstract of Dissertation, Moscow, 1955. 
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of a unique problem (for example, construction problem) i 
is sometimes taken to -mean its reduction to a finite num- 
ber of problems, accepted as a solution, so is a solution 
of a mass problem consist frequently of an effective re- 
duction of this problem to another (or to other) mass 
problems«  (Thus, for example, the problem of differentia- 
tion of a product of two functions f and g reduces effec- 
tively the problem of differentiation of functions f and 
the function g. A large number of algorithms of mathema- 
tios, bear, essentially, indeed this character). 

How can one refine, however, the concept of effec- 
tive redücibility of a mass problem A to a mass problem B? 

Many definitions of the effective redücibility for 
problems of computability of functions and solvability of 
predicates (or sets, corresponding to them) were proposed 
by Post and Kleene.   One of the known ones among these 
is the definition introduced by Post" for Turing redüci- 
bility (in terms of a machine-specified process). The 
Soviet mathematicians have proposed many definitions for 
effective (algorithmic) redücibility in various meanings. 
The mutual relationships have been clarified by V. A. 
Uspenskiy £ 10_/. 

Chronologically, the first of the formulated defini- 
tions advanced by Soviet mathematicians is apparently the 
one which is close to that of Kleene, for the redücibility 
of functions* the idea of which belongs to B. A. Trakhten- 
brot. V. A.5* explains this idea as follows: the func- 
tion J(II) reduces recursively to the function I(»)• , if 

7(*jf belongs to the recursive closure *(*)■ .  (The 
recursive closure of the function  * is the minimum re- 
cursively-closed class, containing  I  and all the pri- 
mitive-recursive functions, '^he  class of funotions is 
called recursively-closed if it is closed relative to 
recursive operations: superposition, primitive recursions, 
and the application of the operator p : the smallest 

1. See S. C. Kleene, Introduction to Meta-Methamatics, 
Moscow, Foreign Literature Press, 1957, pp. 280 — 281. 
2. 3* L. Post. Recursively enumerable, sets of positive 
integers-and their decision pmblemg. Bulletin. American 
Mathematical Society, 7, No. 5 (1944). Henceforth 
designated "Post (1944)." 
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• such that...) ~1 
- Already in his student paper  Y. A. Uspenskiy 

proposed a new definition of the effective reducibility in 
terms of the algorithm of A. F. Kolmogorov. The algorithm 
of A. N/ Kolmogorov can be imagined as realizable by means 
of a'maohine, which converts topological complexes of a 
definite type (  ß - complexes) into complexes of the 
:same type. In accordance with this, the problem and its 
solution are also given in the form of  tt-complexes. One 
can imagine also in the form of  It-complexes the initial 
state of the machine (the machine starts operating when 
one joins to the initial state, which has the form of a 

B-complex, the input date in the form of another 
;H-complex). 

rfhe algorithm of Kolmogorov is called by Y. A.. 
Uspenskiy * unconditional, if the initial B -complex is 
empty, and conditional in the opposite case. Since a con- 
ditional algorithm with a finite initial complex can al- 
ways be replaced by an equivalent unconditional one,.then 
only conditional algorithms with finite (but limited ) 
initial state are of interest. In terms of such condi- 
tional algorithms, Y, A. Uspenskiy * £ "}_J  indeed defines 
the algorithmic reducibility of the functions. 

Inasmuch as (see Section 4-, item 5) the numerical 
functions f(m)   and l(»)  correspond to functions of com- 
plexes F(Xy and A (If) "_, the problem of algorithmic redu- 
cibility of numerical functions reduces to the problem of 
algorithmic reducibility of functions of complexes. It is 
therefore enough to define tbis latter reducibility, which 
is indeed done by V. Ä; Uspenskiy.__ His idea of the defi- 
nition consists of the following £"j>J. 

One considers the reducibility of a function of 
complexes I" to a function of complexes *• • An infinite 

Footnote (3) from pg. 68.   ' V. A. Uspenskiy. General 
Definition of Algorithmic Computability and Algorithmic 
Reducibility. Diploma paper, 1952. 
1. Ibid.       . ' 
2. 'fhe following are limited; the characteristic func- 
tion that relates the number' to each vertex of the complex, 
and the aggregate set of symbols at the ends of segments 
departing from the verticies.      •■■■•.■. 
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complex &*    is constructed, which inoludes in itself all 
the •information concerning the function .-A  . By .MMß£ 
we denote the complex that arises as a result of a join- 
ing of the complex K    to £T4 , realized by some special 
method* The function r. is called algorithmically redu- 
cible to the function Ä , if there exists such an algo- 
rithm (in the sense of A. I. Kolmogorov) ^   , that for 
any complex K r 

1 jr(K)*^*«.f4). 

Just as any computable (i.e., partially recursive) 
function admits of a canonical representation in terms of 
primitive recrusive functions and the operator * (see 
Section 3), so does there exist for each function . ,*W , 
which is algorithmically reducible to a function ;»(») , 
a canonical representation in terms of the function ;«(*) , 
certain primitive-recursive functions, and the operator 

. One of these representations was obtained by V. A. 
Uspenskiy on the basis of the theorem which he proved in 
his diploma paper and in paper I 3j'.    Let the function 
WR) be algorithmically reducible to everywhere-defined 

function Mn) . Then there exists a primitive-recursive 
function -M*, * *> such that if the function -H*.*? is 
specified by the recursions 

[■$(% m+i)mk(mt8 X*> *), $(*))» 

then the function"jiW will be calculated from the formula 

where *(*) and' Wfr) are fully defined foreyer-fi^d re- 
• cursive functions. Prom this representation it ie evident, 
in particular, that the function 1 reduces algorithmi- 
cally to the function & , if it belongs to the recursive 
closure ji , and since the inverse theorem is obvious, so 
is also obvious the equivalence of the algorithmic and re- 
cursive reducibility (the equivalence of the recursive and 
Turing reducibility is also established in the diploma 

paper of 1952). , „. ';..   «* „Ä 
3. All the heretofore considered definitions of re- 

ducibility are found thus to be definitions of the reduci- 
bility of functions relative to the computability. (biaoe 
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the reducibility of the predicates (or sets) by solvabi-~; 

lity can be considered as reducibility of the characte- 
ristic functions by computability, these definitions can 
be used also in application to the reducibility by solva- 
bility.) A new type of reducibility — reducibility by 
enumerability -- was_ introduced into consideration by 
Y. A. Uspenskiy * £  6, 10j7. 

The definition of reducibility by enumerability 
proposed by Y. A. Uspenskiy is based on the concept he 
introduces of the computable operation on sets, which was 
already discussed in the preceding section. With the aid 
of this concept, the_reducibility by enumerability is de- 
fined as. follows * £  6, loj/:  a set R is called reducible 
by enumerability to sets $K%  ...»5,  .if there exists such 
a computable operation U, that /?=*/(£,', ...,£,) . 

In terms of reducibility by enumerability one can 
express reducibility by computability (meaning also redu- 
cibility by solvability). In fact (V. A. Uspenskiy jfioj'. 
a function * reduces by computability to the functions 

t». -"»ti when and only when the graph of the function 
9   reduces by enumerability to the graphs of the func- 

tions ti» ...»♦£ .  In turn, reducibility by enumerability 
can be expressed in terms of reducibility by computability. 
For this purpose it is sufficient to introduce into consi- 
deration the concept of proper function of the set M, 
which equals to 1 when m£M  , and which is not defined 
for mZM    . Actually, the' set R reduces by computabili- 
ty to the sets Sti  ...» Sn   when and only when the proper 
function of the set R reduces by computability to the pro- 
per functions of the sets 'St,  ..., Si 

The most general definition Of reducibility as a 
relation, of which one can' speak as applied to any mass 
problem considered as classes (or families) of arithmetic 
functions (see item 2) (including also the problems of 
computability, solvability, and enumerability), was pro- 
posed by Yu. 2. Medvedev  </~5, 6_7. According to Yu. T, 
Medvedev, a mass problem A reduces algorithmically (or 

1. V. A. uspenskiy. On Operations on Enumerable Sets. 
Dissertation, Moscow, 1955. 
2. Yu. T. Medvedev. Degrees of Difficulties of Mass Pro- 
blems. Dissertation, Moscow State University, 1955. 
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simply redudes) the mass problem B, if there exists a   ' 
partially-recursive operator Bit  J applicable to any 
function g£B   and reducing it to a certain function- 

fa function which depends on g). 
4. The basic distinguishing feature of Medvedev's 

definition is that in its terms the problem of reducibi- 
lity of one mass problem to another (or to others) can 
in turn be considered as a certain mass problem (problem 
of reducibility). How. this is done, will become clear 
from what follows. 

Related to each definition of reducibility of A to 
B is a relation of the equivalence type, which is tanta- 
mount to saying that A reduces to B, and, conversely, B 
reduces to A. Such a relation breaks down the object re- 
gion, to which A and B, into classes, which do not have 
common elements, which we shall call degrees (relative to 
a given reducibility relation) and denote with small latin 
letters.  Since any relation of reducibility is reflected 
intransitive, a set of degrees coressponding to it can.be 
imagined to be partially ordered with the aid of this re- 
lation: if. A reduces to B, we shall say that  a<6  , 
where a and b are the degrees to which A and B belong ' 
respectively. 

For' reducibility by solvability, computability, or 
enumerability we obtain thus the following sets: degrees 
of non-solvability (P), degrees of non-computability '(9), 

degrees of non-enumerahility (/T) . According to Yü. 
T. Medvedev, there corresponds to the reducibility of 
mass problems a set of degrees of difficulty (Ö) . 

A survey of the construction of these sets and of 
the relations between them is contained in the paper by 
V. A. Uspenskiy /_  lO^J?. Thus, in each of partially-or- 
dered sets P, V, ' Fi.   and Q there is the smallest element: 
In P — the class ("degree") of solvable predicates. In 

«/ — the class of computable functions, in ft 
the class of enumerable sets, and in 6 — the class of 
solvable mass problems. Each of the sets P,  V, 77 and ö 

1. The definition given by Kleene for'a partially recur- 
sive operator can be found, for example, in the book by 
S. C. Kleene, Introduction to Meta-Mathematics, Moscow, 
Foreign Literature Press, 1957, p. 291. 
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is the upper serai-lattice (i.e., any of its elements have! 
the least upper edge).- The semi-lattices P,  V, 77 have a 
cardinality <t**2**      and dornet contain maximal-elements. 
The semi-lattice  Ö. has a cardinality  2C  and contains 
a largest element (degree of difficulty of the improper 
problem* i.e., of an empty family of functions). The set 
of degrees of non-oomputability. :(V) _and degrees of non- 
enumerability ;(#) are isomorphic £  6, 10_/, the set of ._ 
degrees of non-sovability (P) is isomorphic only to 
part j(9')  of the set of degrees of non-coaputability 

If?)  , namely to' the set of degrees of non-computabi- 
lity of everywhere-defined functions. In turn, the set 
of degrees of non-en.umerabiiity-.is isomorphic to the regu- 
lar part (lift)     of the set of degrees of difficulty <$) ^# 

The semi-lattice P, as shown by Kleene and Post, 
is not a lattice. The semi-lattice itt as shown by Yu. 
T. Medvedev, is a lattice and even an implicative lattice, 
which can be interpreted as a logic. The least upper 
edge of two degrees of difficulty corresponds in this. 
case to a conjunction, and the largest lower edge corres- 
ponds to a disjunction. The implication of two mass prob- 
lems A and B (more accurately, the degrees of difficulty 
a and b corresponding to them) can be understood as a 
problem C of the least degree of difficulty c such that 

«A«>*<«A»  is the conjunction sign). The implicati- 
vity of the lattice Ä  indeed consists of the fact that 
such a c exists for any a and b. For this o it is natural 
to introduce, as done by Yu. T. Medvedev, the notation 

;*r>*  .  If one identifies the mass problem with the 
degree of its difficulty, it is found that the mass pro- 
blem  «3$ is solvable if and only if a>k   , i.e., when 
b reduces to a (in the sense of Yu. T. Medvedev). It is 
therefore natural to interpret  «ID* as a problem in 
reducibility (b to a). 

The problem of convergence of the reduction of the 
mass problem A to the mass problem B is, therefore, in 
itself a mass problem, unsolvable in the case when A does 
not reduce to B. We shall find this remark useful in the 

1~.     S. 0. Kleene and E. I. Post.  The Upper Semi-Lattice 
of Degrees of Recursive Unsolvabilities, Annals of Mathe- 
matics, Series 2, 59, (195*), 379 — 4-07. 
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next section, in connection with Post's problem of redu- ■ 
cibility). 

As it is known, in an implicative lattice one can 
always introduce negation through implication. However, 
since;the improper problem reduces only to an improper 
one, then the introduction of the negation of a as «IDoo 
(where .<»  is the degree of difficulty of the improper 
problem) would identify negation of any problem different, 
from the improper one, with the improper problem, i.e., 
it would not give the natural meaning of negation. Yu. 
T. Medvedev avoids this by going over from the lattice Q 
to its segment  0<x<* ,  .where 0 is the least degree of 
difficulty and e is an arbitrary degree of difficulty, 
different from .<» . Inasmuch as any such segment of an 
implicative lattice is in its turn an implicative lattice, 
then, defining the negation of a as «Oe , Yu. T. Med- 
vedev obtains * / 5, 6_J7 an interpretation of the ''intui- 
tionistic" logic of formulations, the relations of which 
to the calculus of A. N. Kolmogorov's problems (1932) 
will be treated in Section 11. 

5. For the structure of degrees of difficulties 
Yu. T. Medvedev  /"*>, 6_/ established next a series of 
theorems, pertaining to the problem of the existence of 
mass problems with certain particular properties. Thus, 
for any degree a=£<x>     there exists a problem of solvabi- 
lity, the degree of which is higher than a (i.e., each 
improper interval (a, op)    of the lattice Ö is not empty). 
To the contrary, for each degree a of any particular pro- 
blem in solvability there exists a least x such that *>« 
(i.e., the interval (a, x) is empty). The simplest exam- 
ple  of an empty interval (a, b) is obtained by putting 

a.-s=0, b»x    , where s is the problem of constructing a 
function which is not'general-recursive (such a problem is 
obviously the problem of the least degree of difficulty 
in a class of unsolvable problems). If the degree a^tö 
is obtained from the degrees of the problem of solvability 
with the aid of the disjunction operation with the aid of 
the operations of disjuction, conjunction,' and implication, 

1. Yu. T. Medvedev, Degrees of Difficulty of Mass Pro- 
blems, Dissertation, Moscow State University, 1955. 
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then there exists a non-vanishing degree h«£a     . A theo- 
rem is proved * £ 5^ .'with respect';to problems of enume- 
rability fend solvability.     - 

An investigation of the calculus of mass problems, 
created by'tu. l^Medveder, Was continued further by A. 
A. Kuchnik.  ■'-       > -■'■■''■'■   '-y ,;:'  "/:■' "-■ •..••     -.-:-: ^-::.--' 

A. A. Muchhik considered1, 'in.particular, the prob- 
lem ■■''[Af;-'■■-■-;" cohtinuability of a partially-recursive1' ;__ 
function -ff(n) , consisting of all the'■functions coincid- 
ing with <j»(it) ■" ;_at points' where j$(n); "is 'defined. "Itywas; 

found here, {fly'»  theorem 4-) that if the problem B con- 
sists Of one' function and reduces .'--'dy , then'B is' a solva- 
ble' problem. As a consequence of this we obtain immedia- 
tely that if the problem of ■: solvability of a set B reduces 
to some sort'Of problem of separability of: an' enumerable ;:i 

set, then the; set E is solvable, ::::       •'    ■   • '""''''■ 
•The following theorems hold: - -' -  ,?' 
Theorem 5. Por any pair"of recursively uhseparable 

enumerable sets E.. and E there exists an enumerable unsol- 
vable set H such "that   the problem of separability of 
S and E- does: not[reduce to the problem of solvability:'•' 
of H. " d  , .  ■■. • 

-"■■-Theorem 6* : There; exists an enumerable ' sequence of -' 
pairwise: uhcomparable problems of separability' of enume- 
rable" sets. ■ '■ '• '■•■■"      ; '•:',■■■':;■.,• 

■'■'•■,■'■  Theorem 7i-' Por any unsolvable Av  _ : Of separabi- ■ 
lity-df-enumerable E-. and E_ there ' ' ""1*2 '' exists a 
problem of separability AR „  of recursively uhseparable ' 
enumerable sets'JL and   1 2   H such that A_ -„ does 
not reduce to ATt TT .' 12" H. n,.     .-;.'.. ■ :■    '12' ■  - •       ■■  ■ 

Among- the results of A, A. Muehnik^-pertaining to ' 
the calculus of mass problems of Yu. T.-Medvedev, belongs 
above all his solution of Post's reducibility problem, on 
which .we shall dwell especially in the next section;''   :i 

1. Yu. T. Medvedev, Degrees Of Difficulty: of Mass Prob- 
lems, Dissertation, 'Moscow State University, 1955. 
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7. Post's Reducibility Problem and Problems Related 
With It, 

1. The theory of enumerable sets ie of interest in 
connection with problems of solvability. Historically, this 
term was first applied to problems of solvability of logi- 
cal calculi, under which were meant problems of construc- 
tion of an always applicable (i.e., not partial) algorithm, 
which permits, in accordance with the form of the formula 
of a certain calculus, to solve the problem whether it is 
provable in this calculus or not. As a consequence, prob- 
lems of solvability (see Section 6) of the set M have begun 
to assume the meaning of any mass problem consisting of the 
construction of a calculable function, which assumes, for 
example, a value 1 if the object belongs to M and 0 if it 
does not.  (It is clear that instead of "the belonging of 
the objects to the set M" one can speak of "its having the ; 

property S which defines M.") 
As already noted, it is most natural to imagine an 

enumerable set as a set M of constructive objects, succes- 
sively generated one after the other in some regular process. 
If this process continues without limit, then the problem 
of the belonging to an arbitrary object a to a set M is sol- 
ved effectively (in the sense of the existence of an algo- 
rithm which recognizes whether a belongs to the set M or not) 
only under the condition that not only the Bet M itself is 
enumerable, but also its complement. If the complement to 
the enumerable set M is not enumerable, then the set M is 
unsolvable. 

With the aid of the diagonal procedure it is easy to 
construct an enumerable but unsolvable set thereby obtain- 
ing an example of an algorithmically unsolvable problem of 
solvability. And then the solution of the problem of the 
non-solvability of any mass problem of solvability P can be 
sought already along the ways of algorithmic reduction to 
the problem P of another algorithmic problem Q, the unsolva- 
bility of which has already been proved. It was precisely 
in this manner that the most important results were obtained, 
pertaining to the unsolvability of mass problems, beginning 
with the problems of solvability of a narrow calculus of 

76 



'predicates (in this case also the results,■considered in ; 

Section 9»'of A. A. Markov, Pi S. Novikov, 3. A. Adyan, 
G. 3. Tseytin, and others).  In all these cases the prob- 
lem Q (which they reduced to the considered problem P) 
can be chosed to be in the.same problem which plays the 
role of a standard, for example, the problem of solvabi- 
lity of the predicate (£ff)r,(aua/;r),,  (or the correspond- 
ing enumerable set:   4£i)7",(r,z.x))'   *). This predicate 
has the highest degree of unsolvability compared with any 
predicate of the type  (£*)/^a,x) , where H is a recursive 
two-place predicate (a predicate of the type (Ez) R (q, z)  , 
and can define, as is known, any enumerable set}." In 
particular, any.enumerable but not solvable set reduces 
by solvability to a set T:-  «(fx^Cz, Z,J:>  . .The question 
arises naturally whether the reverse is true:, do there 
exist  enumerable but unsolvable sets with a smaller de- 
gree of unsolvability than in T? Can one, in other words, 
reduce (by solvability) T to any enumerable but not' sol- 
vable set? This problem' was.raised in 1944 by Post and 
is known as Post's deducibility .problem. • Por its solu- 
tion, naturally, it was found convenient to analyze the 
construction of the set of all enumerable sets and ana- 
lyze all possible means of reducing "(by solvability)'cer- 
tain sets to others.  In the foreign literature very many 
papers devoted to this problem have been published, most 
important of which are those written by Post, Kleene, 
Turing, Reis, Decker, Spector, Priedberg and others. Prom 
among the Soviet mathematicians, at the initiative of P. 
S. Novikov and A..N. KolmogoroV, who attracted to these 
problems the attention of the students,, were engaged B. A. 
Trakhtenbrot, A. V. Kuznetsov, V* A. tfspenskiy, Tu. T. 
Medvedev, and A. A. Muchnik. The Post problem was solved 
almost simultaneously and almost independently of each 
other by the young mathematician A. A. Muchnik and the 
American mathematician Priedberg (certain additional 
results obtained by Muchnik are lacking in Priedberg.1 s 
work). But the works preceeding the results of Muchnik 
and Priedberg and pertaining to problems of classifica- 
tion of enumerable sets, construction o'f their system, and 

1.  See S.. 0. Kleene, Introduction to Meta-Mäthematics, 
Moscow, Poreign Literature Press, 1957, p. 253# 
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the interrelation of various types of enumerable opera- 
tors, retain their significance independent of the Post 
problem. . , 

2. The problem of reduc.ibiiity, which was formu- 
lated by Post in connection with the general premise, 
created in the region of problems of solvability of for- 
mal logical-mathematical calculations, was found to be, 
as was "noted for example by Myhi11 ', connected in a 
certain sense with the famous theorem of Goedel concern- 
ing tlie incompleteness of formalized systems, containing 
arithmetic.- A set of provable formulas of such systems 
is enumerable, but not solvable, i.e., their complement 
is not enumerable. Furthermore, for any formal system 

mt    .(with effective rules of deduction), permitting to 
record in its terms all equalities of the form f(x) -  y, 
where f is a computable (i.e., specified by some algo- 
rithm) numerical function such that the equalities 
f(x) = y are provable by the means of the 2 system if 
and only if they are contentfully true, the. following 
situation takes place: ä) the set D of Goedel numbers of 
provable formulas of such a system is.enumerable; b) the 
complement t>' to the set D  is not enumerable; c) among 
the"subsets of set DV there is an infinite enumerable 
set; d) among the subsets of set D' there is no "maximal" 
infinite enumerable set R ("maximal" in that sense, that 
the difference M\fi   no longer contains an infinite 
enumerable set); e) there exists a computable (and even a 
general-recursive) "reproducing" function p such that if 
n is a Goedel number of an infinite enumerable set V»C/>' , 
then the number p(n') belongs to the difference Z>'\/* . 

In other words, the set D* of the provable formulas 
of the system 2     (we note that this sytem is non-contra- 
dictory, since not all of its formulas are provable) such 
that one can add to it any infinite enumerable set P* , 
of formulas that are not contained in them, and neverthe- 
less one finds effectively after this a formula which is 
not contained in the junction   ^{J^i*      To this 

1. J. Myhill, Creative Sets, Zeitschr. Mathem Logik u. 
Grundlagen Math. 1, (1955),- 97 — 1Q8. , ,. ..    " , 
2. The asterisks arc used here because we have changed 
over from Goedel numbers of formulas to the formulas 
themselves. 
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: union one can add again an infinite enumerable set P* "\ 
of formulas not contained in it and again, from the 2 

Goedel number of this set, one can effectively indicate 
at a formula not contained in the union D*\JP*\JP*      , 
etc. ) 

The sets of natural numbers with properties a) — 
e), were called by Post creative.  The enumerable set, 

... having the property b), but not having the property c) 
(i.e., such that its complement is infinite, but does 
not contain an infinite enumerable subset), he called 
simple. Among the enumerable sets the creative ones 
(all of them!) have one in the same, higher,•degree of 
unsolvability: any enumerable set is reduced to them by 
solvability.  (The "standard" T, whioh we discussed in 
item 1, is consequently such a creative set.) But is a ■ 
creative set, for example, reduced to any simple one? The 
Post problem would be solved were  it possible to answer 
this question in the negative. But do simple sets exist 
at all? And how can one prove the unsolvability of suoh 
a set without resorting tö reducing the standard to it* 
Already in 1944 Post succeeded in constructing an exam- 
ple of a simple set P, the proof of the unsolvability of 
which did not consist of reducing (of the proposed)'stan- 
dard T to P. However, the question of whether T never- 
theless reduces to a simple set constructed by it was an- 
swered in the affirmative:  »It reduces.» The »simplici- 
ty» of the set by itself was thus found to be insuffi- 
cient in order for T not to be reduced to it. Then Post 

1. A7 shown by V. A. Uspenskiy /~14j7 in item e) it is 
possible to replace the enumerable function p, whioh re- 
produces the number p(n), belonging to the difference 

]y\P    , by means of a computable function g, which re- 
produces the Goedel number g(n) of a certain infinite enu- 
merable set QQ£>'\f>    f iseM 0ne can speak not of an ef- 
fective searching for a formula not contained in the union 

!>*{JP*     , but of an effective definition of an infinite 
enumerable set of such formulas.  In the same note /~lV"7, 
V. A. Uspenskiy constructed an example'of an enumerable  '■ 
set, the complement of which "has the properties  t>)-d) 
but for which e) is not true. * 
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separated among the simple sets a particular class of 
hypersimple ones, (a hypersimple set is an enumerable set 
H, the complement.■-of which H' is infinite, and such that 
there exists no enumerable set or pairwise non-intersect- 
ing corteges, each of which intersect with H') and attem- 
pted to prove that the creative set does not reduce to the 
hypersimple one. By way of methods of reduction he 
.used in this case a special apparatus (Post's tables), 
'developed by him specially for the reducibility by sol- 
vability, i.e., pertaining to predicates ("arithmetic" 
functions, which assume one and only one of two values, 
0 or 1).  It. was found that with the aid of this appara- 
tus the creative set.does not reduce to the hypersimple 
one. But the question remained open of whether this 
remains true also for the more general concept of algorith- 
mic reducibility. To answer this question it was neces- 
sary to investigate above all various possible methods of 
reduction — the mutual relationship between various 
classes of enumerable operators. This problem was espe- 
cially investigated by B. A. Trakhtenbrot / 3, 12_y» .who 

was later joined by A. 7. Kuanetsov / 2_y. 
3.  In his papers £  3, 12 J  Trakhtenbrot investi- 

gated the mutual relationship between the following types 
of enumerable operators:■a) primitive-recursive ; 
b) those he called Post "operators" '; c) general-recur- 
sive  ; &■) partially-recursive. 

Ti     The expressions: a)« f-Tfl/>)#, where T is. a primitive- 
recarsive operator, and b) " f ' is uniformly primitively- 
recursive relative to ^ " denotes the same thing. See 
Kleene, Introduction i?o Meta-Mathematics, Moscow, Foreign 
Literature Press, 1957,. p. 210 — 211. 
2. Post operators correspond to Post's tables. As estab- 
lished by B.A. Trakhtenbrot C"5j\  a Post operator can be 
represented in the following form: we consider a primitive- 
recursive operator T, which processes a set of n functions 
1 , f ,.«.,f.    into the function f, and we place instead 
o? fn

1a certain defined general-recxirsive function y  . 
The obtained operator Tf+,/i, -.-,/*-i) is indeed'.a Post 
operator of n -1 functional variables. 
3. A partially-recursive operator is called general-recur- 
sive if it transforms any everywhere-defined function into 
one everywhere-defined. 
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It was found that between these Glasses of operators 
there exist relations of strict inclusion, i.e., each suc- 
cessive class is broader than the preceding one. It was 
found further that a creative set does hot reduce to a hyper- 
simple one not only by means of Post operators but even_by . 
general-recursive_oper'ators (E» A* Trakhtenbrot ^ 3, 5^, 
A. V. Kuznetsov / 2_/. Yet Decker observed that the situa- 
tion is different in the case of partially recursive opera- 
tors: for each creative set K there exists a hyper-simple 
one H, to which K reduces by means of a partially recursive 
operator *. This naturally did not exclude the possibility 
of their existing among the hyper-simple sets themselves 
partially-recursive operators that do not reduce one to ano- 
ther, i.e., that hyper-simple sets can have different deg- 
rees of unsolvability. The problem raised by Post for enu- 
merable sets has shown thus an analogous problem for hyper- 
simple sets. 

At the same time the following problems aroses 
a) study of the structure of a system of hyper-simple sets; 
b) clarification of the role of partially-recursive operators 
which are not general-recursive. The_first of these was 
first_engaged in by Yu. T. Medvedev /_  4_/, V. A. Uspenskiy 
/ 14- /, and A. V. Kuznetsov (concerning the latter, see 
/_  14_y, for example). Together with solving the Post prob- 
lem, the problem was completely solved by A. A. Muchnik 
/ 1, 3__/ *. The fact that operators which are partially 

1. In fact, Decker has also shown that for each non-enu- 
merable set E. there exists a hyper-simple set E?, to which 
E. can be reduced by a partially recursive operator. 
2. A detailed exposition of the results of A. A« Muchni£, 
pertaining to Post's problem (with complete proofs) is found 
in his dissertation "Solution of the Post Solvability Prob- 
lem" (the abstract was sent out on 14- November 1958). The 
contents of his two papers at the Moscow Mathematical Soci- 
ety of 16 October 1956 and 17 December 1957 werepublished 
in two artioles: "Solution of the Post Reducibility Problem 
and Certain Other Problems in the Theory of Algorithms. I" 
and "Isomorphism of Systems of Recursive-enumerable Sets 
with Effective Properties" (Trudy Moskovskogo Matematiches- 
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—      . _L 
recursive but not general recursive can play a very sub- ' 
stantial role^as a reduction method__was explained, iii 
particular, by A. V. Kuznetsov JTiJ.  and B. A. Trakhten- 
brot £~5j  in their joint paper. It is with this work 
that we now begin an examination of the. second of the 
foregoing problems (item 5 is devoted especially to the 
first one), ■ .— 

4. Corresponding to the intuitive meaning of a 
"reduction" of the calculation of one function (i\>) 
to others Op&,'~"/?'h) *s essentially indeed the concept 
of the partially recursive (q'r computable) operator, .which 
permits, given enough information on the values of the 
functions fif^--yfk   to calculate the values of the func- 
tions *j/  (if they are defined). A .general-recursive 
operator (we shall confine ourselves for simplicity to-the 
iase k = 1) is also partially recursive, but satisfies the . 
additional requirement that any every-where defined furic- 
uion is converted by it again.into one everywhere-defined, 
[t could happen, incidentally,,that an operator which -con- 
certs any one everywhere-defined function into one not 
everywhere defined, is perhaps not worthy of the name 
'computable operator." 

Such a point of view was particularly tempting in 
«onnection'with the results of V. A. Trakbtenbrot / 3_/, ' 
,'hich is: shown that from a,a hypersimple set * it is impos- 
ible to obtain a creative set by any general-recursive■ 
perator.  (//ere it possible to neglect partially-recur- 
ive operators in the statement of the Post problem, then 
he Post problem could be thus solved). During the'course 
f a discussion that took place on the Seminar on Mathema- 
ical Logic at the Moscow State University in connection 
d.th the paper by B. A. Trakhtenbrot (November 1954), which 
contained a detailed proof of this result,' arguments 
igainst this point of view were raised by V. A. Uspenskiy 

footnote (2)> cont. from Pg, 81 ... kogo obshchestva . 
/ Works of the Moscow Mathematical Society__/ 7 (1958)» PP» 
391 — 405 and 407 «r- 412. His solution to 'the Post prob- 
lem was reported by A, A. Muchnik to the" participants of 
the Seminar on Mathematical Logic at the Moscow State 
Jniversity at the end of 1955. 
i. The  set is identified here ^ith the corresponding 
characteristic function. 
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: (published in/ 13_/» theorem 11) and A. V. Kuznetsov, ~V 
who constructed examples of partially-recursive operators 
which are not general-recursive, and nevertheless reduce 
any general-recursive function into a general-recursive 
one. SPhe value of partially-recursive hut non-general 
recursive operators was particularly emphasized thereby 
in connection with considerations pertaining to the con- 

jcept, proposed by A* V. Kuznetsov, of "general-definite- 
'ness" and »field of general-definiteness" of an operator.'' 
The participants of the seminars led by P. S. Novikov, 
and the students at his courses on the fundamentals of 
mathematics and on the-descriptive theory of functions, 
usually consider (particularly since 1954) everywhere- 
defined single-placed numerical functions as point in 
the Baire space.  This method of working with arithmetic 
function was illustratedjLn greater detail in the article 
by V. A. Uspenskiy / 13JO . The system of all single-- 
placed numerical functions (including those not every- 
where defined) is identifiable, following Y. A. uspenskiy 
(Z 13_/» Section 10) with the generalised Baire space J . 
The  function P is called general-defined at the point 
<££ J , if P is defined at the point CL     and F<fd.)£J • 
(i.e., if the operator P converts <&     into an everywhere- 
defined function). The aggregate of all points of ordi- 
nary Baire space J (i.e., of all everywhere-defined 
single-placed numerical functions) in which the function F 
is general-defined, is called the region of general-defi- 
niteness of the function (operator) P. 

Let 1    be any everywhere-defined arithmetic func- 
tion, the complement to the graph of which is an enume- 
rable set. A. A. Muchnik has shown that the set J\ty 
(i.e., the set of all the points of ordinary Baire space, 
different from *  ) is the region of general-definite- 
ness of a certain partially-recursive operator.  If in 
this case the function j -  is not general-recursive, this 
proves in itself the existence of a partial-recursive 
operator, which although it is not general-recursive, ne- 
vertheless it not only transforms any general-recursive 
function into a general-recursive one,'but in general 
behaves differently from the general-recursive operator 
only as applied to one not too good function. A simple 
..example of a function . * which is general-recursive was 
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constructed by A» V. Kuznetsov £ 2_J\   .furthermore, it ~~ 
was found that an operator of this kind is far from" 
being a rare exception: as shov/n by A. V.. Kuznetsov, 
the class of. functions f ,■ for which there exists a 
partially-recursive operator 7\J » general-defined in 
all points of a.B&ire space J, with the exception of a 
single i   , is such that is enough to substitute in 

j(z)     in place of x only primitive-recursive functions x, 
so as Jo obtain all single-placed) hyper-arithmetic func- 
tions» ■' Leaning on one of the results of Kleene," A. V. 
Kuznetsov has constructed later an example of such a par- 
tially-recursive operator, which is not general-recursive, 
but is general-defined in all hyper-arithmetic points, 

V/hst is 'required of a set of points of Baire space" 
in order that this set could be a region of general-defi- 
niteness of any partially-recursive operator? The answer 
to this question is the criterion obtained (independently 
of each other ) in November 1954 by A. V« Kuznetsov / 2_/ 
and .B. A Trakhtenbrot / 5_/. . For each formulation it- \ 
was found convenient to obtain a certain effectivization 
of the concept of open, closed and G$   sets, on which we 
shall dwell in.greater detail in Section 12. In terms of 
this effectivization, the Kusnetsov-Trakhtenbrot theorem 
(theorem 2') reads as follows: 

]?or the existence of a partially-recursive opera- 
tor (respectively, functional) having as the region of 
general-definiteness the set MSl  » i"fc is necessary and 
sufficient that M be an effective  <78 set (respectively, 

1. In Kleene's generalized (by adding to the quantor pre- 
fix quantors by functions) hierarchy of forics of predi- 
cates, there corresponds to- arithmetic functions also 
predicates (which define these functions), which are res- 
ponsible in both single-function quantor forms.  In the 
article by A, V. Kuznetsov £ zj  and B. A, Trakhtenbrot 
/ 5_/ these functions figure as "reducible to effectively 
dosed points."  In Section 8 of the present survey they 
are called, following A. V. Kuznetsov, Bf functions. 
2. The theorem that there exists a gerieral-recursive pre- 
dicate RU.x)     (where «  is a functional variable) such 
that   (E«)(*)Ä(«. *)      is true, while (.*)&«,*) is false for 
any hyper-arithmetic *    ; . 

84- 



an effective open set).  (The proof of this theorem* pro- 
posed by V. A. Uspenskiy, was given in /ii7,pp. 140 — 
14-1). 

These and other ideas and results of A. V. Kuznetsov, 
B. A. Trakhtenbrot* and V. A. Uspenskiy have found applica- 
tion to the solution of many problems, concerned with the 
construetlvization of the concept and methods of mathemati- 
cal analysis (see Section 12). 

5. Two sets of natural numbers E* and E" are called 
isomorphio if there exists a mapping that converts E' exact- 
ly into E»« and is realizable by a general-recursive func- 
tion m a f(n), which mutually uniquely maps the natural se- 
ries on itself. Important examples of non-isomorphic enu- 
merable (but unsolvable) sets are obtained directly from 
the results of Post (1944).1' At the Seminar on Recursive 
Arithmetic at the Moscow University (1954), A. N, Kolmogorov 
formulated the general problem of how rich a,; class of pair- 
wise non-isomorpidie_enumerable (but unsolvaffe) sets can be. 

In remarks /_ i±J%  Yu. T. Medvedev answered this ques- 
tion, explaining how strikingly large the variety of even 
pairwise non-isomorphic hyper-simple sets can be. Yu. T. 
Medvedev obtained his answer by seeking a clear and conve- 
nient characteristic property of hyper-simple sets, which 
was also independently discovered by V. A. Uspenskiy /"l4_7 
and A. V. Kuznetsov (ibid. p. 166). 

It is natural to connect with the set M of the natu- 
ram numbers a function f, which enumerates M strictly in 
order of increasing of its elements.  Such a function A. V. 
Kuznetsov proposed to call a direct enumeration of the set 
M. Possessing of computable direct enumerations are, as is 
well known (established by Post) infinite solvable,, and only 
such sets. Of substantial interest, however, are also those 
oases, when the direct enumeration of this set, although not 
computable, is nevertheless majored by a general-recursive 
function. What is this class of sets for which that is 
impossible? And incidentally this question is given by one 

1. Concerning the results of A. A. Muchnik, pertaining to 
isomorphic systems of enumerable sets, see Section 8. 
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<theorem of V. A. Uspenskiy (/ 1V/, theorem 4), which we~' 
shall not give here, but with which is closely related a 
theorem of the characteristic property of a. hyper-simple 
set, obtained by Yu. T. Medvedev and A.'V. Kuznetsov. We 
give it in the formulation of A. V. £u#netsov: 

An enumerable set H is hyper-simple when and only 
when its complement H' is infinite but-/such that a direct., 
enumeration of the set H* is not:majored by any general- ; 
recursive function. ,   . 

Yü. T. Medvedev introduces into consideration not 
the direct enumeration of the set F of natural numbers, 
but a different function, which he denotes S(n), which is 
taken to mean the number of points of the set E on the 
interval (l,n)'. If there exists such a general-recursive 
function ;0; that 

then Yu. I. Medvedev says that the set E. is not less 
dense than the set S . This relation defines naturally 
the relations of uniform and large density. The fact that 
the set E2' is denser than the set E is written as follows: 
]Et<Ma■•;. Using this terminology, it can be said that 

•;he characteristic property of a hyper-simple set H con- 
sists of that H is an enumerable set with an infinite 
complement E', but a less dense one than a natural series-. 
>f numbers lkr<N-  . Since the is:omorphic sets have uni- • 
form density, then the following theorem (/"V/, theorem 
0 gives* a sufficiently clear representation of the supply 
>f non-isomorphic hyper-simple sets; 

For any constructive transfinite I«.' there exists 
x sequence of the type J« .. of ever denser complements to 
bhe hyper-simple sets: ' '',.', 

This theorem is an obvious consequence of the cir- 
cumstance noted by Yu. T. Medvedev: by adding to H or by 
removing from the hyper-simple merely one point, we obtain 
a new set (also hyper-simple) the complement to which has 
a different "density" than the complement,to the initial 
sets, 

6. As already noted (Section 6, item 4), the semi- 
lattice of degrees of unsolvability of arbitrary sets of.; 
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öf natural numbers (relative to the reducibility by par- 
tially-recursive operators) have been investigated by 
Kleene and Post» This still did not solve Post's problem, 
since the latter pertains especially to enumerable sets. 
The complexity of constructing a system öf enumerable sets 
should bring to mind/ nbWever, the existence of different 
degrees of unsolvability also in the system Of enumerable 
sets. We have already remarked (Section 6, item 4) that 
Yu. T. Medvedev formulated the problem of reducibility as 
a mass problem in his definition. But the mass problem in 
the sense of Yu. T. Medvedev is the problem of the construc- 
tion of an arithmetic function, satisfying definite require- 
ments. Of what function can one speak in Post's problem of 
reducibility? The Post problem can be formulated as follows: 
it is necessary to ascertain whether for any pair of enume- 
rable but not solvable sets A and B there exists a partial- 
ly-recursive operator T which transforms Atbe j Sftfc A (its t 
characteristic f.) into a set B (the function f_). But a 
partially-recursive operator is still in itself not an arith- 
metic function. It is, however, difficult to give a func- 
tional representation for a partially-recursive operator. 
Such representations were proposed by various authors. The 
best known is that proposed by Kleene.   Other representa* 
tions are contained in the dissertation of Yu. T. Medvedev, 
in the work by A. V. Kuznetsov £zj  and B. A.JTrakhtenbrot 
Z 5-7» and in "the article by V. A. Uspenskiy '£15J,  who 
identify computable operators with constructively continuous 
functions on a generalized Baire space (concerning this, see 
Section 10). Yu. T. Medvedev considers operators which con- 
vert everywhere-defined arithmetic functions (i.e., sequen- 
ces of points of ordinary Baire space) in everywhere-defined 
arithmetic functions. By means of the conversion, realizable 
by operator T, which converts the function f into the func- 
tion g, there is induoed a conversion of each cortege f (0), 
f(l,...,f(n) into a certain cortege g(0), g(l),...,g(m), and 

■1. See S. C. Kleene. Introduction into Meta-Mathematics, 
Moscow, Foreign Literature Press, 1957, p. 308, 
2, Yu. T. Medvedev, Degrees of Difficulty of Mass Prob- 
lems, Dissertation, Moscow State University, 1955. . 
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vioe versa, such a conversion of corteges a. , a?,...,a  1 
into corteges b_,. tu,. ...,b at which there n . 

occurs with increasing n, at »the very-most, only an addi- 
tion to an already obtained cortege of new terms, defines 
also a conversion of one function (infinite sequences) 

d     into another one ß   . Corresponding to. the operator 
?, which converts functions into -functionsf.  is thus (mutu- 
lly uniquely) an operator A  , which converts corteges ?- 
.nto corteges. But all pairs of corteges can be effec- 
;ively renumbered, and thereby even with a primitive-re- 
mrsive function. Thus there will correspond to the set 
>f all pairs of corteges, defined by the operator • A 
^and consequently, to the corresponding operator T) a cer- 
tain sequence of numbers, i.e., an everywhere defined 
arithmetic function £  , about which we shall, together 
/ith Yu..T." Medvedev and A. A. Muohnik, that it "realizes 
;he functional representation of the-.operator T." 

As proved by Yu. T. Medvedev,, * for each partially- 
recursive operator I there exists a primit-ive-recursive- 
?unction £ ., which realizes its functional representation. 

Furthermore, for all partially-recursive operators 
.', whicii convert the predicates (i.e., the characteristic 
.■unctions of. sets) into predicates, there exists a univer- . 
;al functional representation, i.e., a primitive-recursive 
'unctionf'(x,W)such that the functional representation, of 
he operator T is realized by the function^ (tfr)Z- yQcJW) • 
he operator corresponding to this function will be deno- 

To each pair £A} Dj  of sets there corresponds a 
)lass of functions q>x    °£ operators 3? , which convert any 
me of the characteristic functions f.xor f into another. . 
iince the functions <px.      are primitive-recursive (i.e.., 
Ghey are known to be general-recursive), then the (mass) 
»roblem of reductibility of at least one', of the sets A, B 
into another is not solvable when and only when the class 
of functions ^X  or of operators T corresponding to it 
is empty, i.e., when not one of the sets A,B reduces to 
another by partially-recursive operators. An example of 

I. Yu. T. Medvedev, Degrees of Difficulty of Mass Prob- 
lems, Dissertation, Moscow State University, 1955. 
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such two enumerable but not solvable sets IL and H , for 
which the corresponding class T was empty, was indeed cons- 
tructed by A. A. Muchnik (/V7* * theorem 1) who solved 
thereby the Post problem. The results of A. A, Muchnik 
prove the existence of incomparable With each other degrees 
of unsolvability of enumerable sets» Furtherfore, the sets 
constructed by A. A, Muchnik are hyper-simple, Thus, even 
in the system of hyper^simple sets there exist sets with 
incomparable degrees of unsolvability. A. A. Muchnik has 
strengthened considerably this result, by proving (/"~1_7, 
theorem 2) that there exists an enumerable sequence of 
hyper-simple H , H2,...,H , the terms of which are pairwise 
not reducible 'Eo each other by partially-recursive operators. 
At even further strengthening it the rather unexpected * 
(inasmuch as both in the structure of degrees of difficul- 
ties of Yu. T. Medvedev (see Section 6, item 4) and in the 
semi-lattice of degrees of unsolvability of Kleene-Post, 
ther^exist minimal (non-vanishing) degrees of unsolvabi- 
lity '), is the theorem 3, proved by A. A. Muchnik, that no 
what the enumerable but unsolvable set G may be, there exists 
a hyper-simple H, of smaller degree of unsolvability, i.e., 
one that reduces to G- but to which G- does not reduce by a^ 
partially-recursive operator. As noted by Harley Rogers, 
this result is missing from the work of the American mathe- 
matician Priedberg, who also solved (independently of A. A. 
Muchnik) the Post problem. But indeed this result is of 
particular interest in connection with the Post problem, 

1. The heading of the note ("Unsolvability of the Problem 
of Reducibility of the Theory of Algorithms") is explained 
by the statement of the problem clarified above. 
2. See, for example, Abstract by Hartley Rogers (in the 
Journal ofJzmbojj.oJLogic, 22, (1957), pp. 218 — 219), 
3. In the lattice of degrees of difficulties, this is the 
degree of difficulty of the construction of a function which 
is not general-recursive. With respect to the Kleene-Post 
semi-lattice see: Clifford Spector, On Degrees of Recursive 
Unsolvability, Journal of Symbolic Logic. 21 (1956), p. 111. 
4. See the abstract by H. Rogers, Journal of Symbolic Logic, 
22, (1957), p. 219.  
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since it follows from it that among the unsolvable enumerable 
sets there is none that oan serve as a standard, suitable 
for'proving the unsolvability of any.; unsolvable enumerable 
seti 

8. Descriptive Properties of iAJrithmetic Sets* 
Problems of Classification of Sets, Functions, 

and Other Objects.' * 

1. P. S." Novikov and his students spend much time 
on questions connected with the analogy between the enume- 
rable sets of natural numbers and A sets. The solvable sets 
in this analogy correspond to B sets. This analogy is based 
on the fact that enumerable sets are obtained from solvable 
by projection, i.e., the same way that A sets are obtained 
from- B sets. It is natural that many questions and concepts 
arose, analogous to those studied in the descriptive theory 
of sets'. An example of such a concept is the universal enu- 
merable set, an example of which is the question of separa- 
bility of enumerable sets by solvable ones. But while the 
universal enumerable set is perfectly analogous (in its 
definition and role) to the universal A sets, from the an- 
swer to the question of the separability there is already 
obvious a certain violation of the complete analogy. Indeed, 
P. S. Bovikov, and later B. A. Trakhtenbröt £ 2_J  construc- 
ted many examples of pair of non-intersecting enumerable sets, 
which are recursive-non-separable (i.e., not separable by 
solvable sets '). 

While any two non-intersecting A sets are separable 
by B sets, it is not the analogies of A sets, i.e., enume- 
rable sets, that are recursive-separable but their comple- 
ments, i.e., the analogues of CA sets.. Connected with the 
fact of separability for the latter was indeed the first 
example of a pair of non-intersecting recursive-non- 

1. This section was written with the collaboration of 
A. V. Kuznetsov. 
2. The first example of this kind was published by Kleene 
in 1951, who obtained it independently of P. S. Novikov. 
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_L 
separable enumerable sets, constructed by P. 3. JTovikov1"*": 
in analogy with his example of CA sets, not separable by 
B sets. 

At the sane time it was possible to solve for enu- 
merable sets several problems, the analogies of which in 
the theory of A sets entail principal difficulties. One 
of such problems, formulated by P, s. lovikov, was solved 
by A. A. Muchnik / 2_/. We proceed to a discussion of 
this problem now. 

2. In the theory of enumerable sets one frequently 
makes use of the following modification of the ordinary 
concept of the universal enumerable set: an enumerable set 
U of natural numbers is called universal, if for any enu- 
merable set V of natural numbers there exists such a 
mutually-unique general-recursive function f    , that. 

Vxjfrf sf (x)e V). 
In all the above-mentioned examples of recursively 

inseparable enumerable sets, the latter ones are universal. 
P. 3. Fovikov raised the question of whether there exist 
non-universal recursive non-separable enumerable sets. An 
answer to this question was obtained by A. A. Muchnik  ' 
L 2.Jt  wil° introduced a concept of strongly non-separable 
enumerable* sets and who proved the existence of such.' 
Indeed, it was found that strongly non-separable sets are 
recursively non-separable, but not universal. With the 
aid of these A. A. Muchnik. obtained, in addition, a posi- 
tive answer to two problems raised by V. A* Uspenskiy 
(Z 5.y» problems I and II), which we shall discuss in con- 
nection with problems of incompleteness and incompleteabi- 
iity of logical calculus (see_3ection 12). 

In the same paper £~2\J  A. A. Muchnik introduced 
into consideration such sets (»sets of pairs") for which 
there exist sets that are strongly non-separable from them, 
and proved many theorems concerning these and also concern- 
ing the universal and simple sets of Post. He also ob- 
served still another example of violation of the analogy 
between A sets and enumerable sets (Z~2„/> theorem 10). 

To one of the questions raised by' A. A. Muchnik in 

1. See the editor's remak on p. 27.7 in the book of Kleene 
(Meta-Mathematics). 
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the same place {/_  2__7, Section III, problem 2), he later on 
obtained an answer, which states that any unsolvable enume- 
rable set can be represented in the form of a union of two 
recursively non-separable sets* Since such a representa- 
tion is impossible for solvable sets, this establishes a 
direct connection between non-solvability and non-separa- 
bility* 

Many other results were obtained by A, A, Muchnik 
pertaining to properties of enumerable sets and are con- 
tained in / 1, 2_/. * 

3. The idea of the analogy between enumerable sets 
and A sets arose in connection with the work by Kleene, in 
which a certain classification ("hierarchy") was constructed 
for "elementary" * predicates by their quantor prefixes. As 
noted in the work by Kleene, the analogy between logical 
operations, expressed by Quantors of existence and genera- 
lity, and the geometrical operations of projection and inter- 
section (respectively) is known.  (He had in mind here the 
works by larski and others).  Leaning on Goedel and Ulem, 
Kleene advanced the suggestion of the possibility in con- 
nection between his results and the theory of Borel and 
Baire. In a survey paper to the Moscow Mathematical Society 
on 4 December 1945 ("Computable Sequences and ther Value in 
Investigations of the Fundamentals of Mathematics") A. N. 
Kolmogorov has concretized this analogy, relating the re- 
sults of Kleene concerning the existence of an enumerable 
but unsolvable set, with the well-known theory of M. Ya. 
Suslin, on the existence of an A set which is not a B set. 
In the winter 1946/1947 of the academic year, a seminar was 
in session under the leadership of P. S. Novikov, in which 
problems were investigated connected with this analogy. 

1. Certain of these have been published together with de- 
tailed proofs in the Seventh volume of Trudy Moskovskovo 
Matematicheskovo Obshchestva (Works of the Moscow Mathema- 
tical Society). 
2. In the Russian translation of the book by Kleene these 
predicates are also called "arithmetic in the sense of Goe- 
del." In this section they (and also the sets that they de- 
fine) will be called briefly "arithmetic," In many papers of 
Soviet authors they were called recursive-protective. 
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P. S. Novikov was interested in these questions in con- ; 

neotion with, the difficult problems in descriptive 
theory of sets, which we' discussed in Section 1 of the 
present article.■- The greater simplicity of the nature of 
subsets of the natural series" compared with the subsets'of 
the continuum has given rise to the hope that the solu- 
tion of problems in the theory of "arithmetic" sets will 
suggest the answers that can be expected for analogous  r- 
questi'ons in descriptive theory oif sets. In particular, 
the hypothesis of the existence of a non-dehumerable CA 
aet without a perfect kernel (see Section 1, ^tem 1 of 
the present article) was considered as a corresponding 
Post theorem on the existence of a simple set (enumerable 
set, the complement to which is infinite-, but does not 
contain an enumerable subset) (see Section 7, item 2)» 

The carrying out of an analogy between the afore- 
mentioned classification of Kleene (it was known to us 
for a long time only from the work of Kleene, although 
actually it is the Kleene-Mostowski hierarchy) and the 
classification of protective sets has made_it possible . 
to raise, in the-theory of "arithmetic" sets, questions 
analogous to the problem of separability of protective 
sets of higher classes. A solution of these problems 
involves no difficulty. The loss of separability for 
sets, defined by predicates with n-quantor prefixes of 
the type 3xi Vx* 3x$Vz¥  ••• and a recursive sub- 
quantor portion R (A. Kostowski denotes subsets by the 
symbol P and their complements by the symbol Q ) were 
found tonbe (for n = 1, 2, 3,...) analogous to the laws 
of separability for A sets,'established earlier by P. S. 

■■Novikov, but not-analogous (this was already noted in 
above in item 1) to the laws of separability for A]L sets 
(i.e., A sets).  In spite of the latter, the analogy (in 
the classifications) between P sets and A^ sets predic- 
ted the hypothesis that for  " Ti ^ 2     the laws of 

separability for A sets are analogous to the laws of 
separability for A^ sets, the non-contradiction of which 
was indeed proved later by P. S. Novikov, for sufficiently 
large n (see Section 1, item 1). 

Incidentally, many other questions in the theory 
of arithmetic sets, analogous to the well-known problems 
of descriptive theory of sets, were raised and solved 
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along with the above. Many results (including those men- 
tioned above) were expounded in detail in the lectures by 
P. S. Novikov, which he delivered at the Moscow University 
in the spring of 1952. Among these are included also the 
results pertaining to problems in the laws of unformization 
for certain classes of "arithmetic" sets. In particular, 
the question was raised of the possibility of separating in 
any set of a given class a uniformizing subset of the same 
class. P. S. Novikov has shown in his lectures that for 
classes of primitive-recursive, solvable, and enumerable 
sets this question is answered in the affirmative, wherein 
the case of the first two of these classes the uniformizing 
subset of a given set can be taken to be the set of his lo- 
wer points, later on V. A, Uspenskiy £ 14_/ proved that in 
the case of a class of enumerable (i.e., P1) sets the latter, 
generally speaking is not true, since there exists such an 
enumerable set, the set of lower points of which is"not enu- 
merable. 

4. The already noted incompleteness of the analogy 
between the enumerable sets and A sets as a part of the ge- 
neral analogy between the P and A sets has raised ques- 
tions of the refinement of ^he limits of the analogy for the 
purpose of its subsequent perfection or replacement by ano- 
ther, deeper analogy. Thus, P. S. Novikov expressed the 
idea that the analogy is incomplete only for the beginnings 
of the classifications as a consequence of the specific pro- 
perties of A sets compared with the properties of protective 
sets of higher classes. On the other hand, A. V. Kuznetsov 
even in January 194-9 (Seminar on Mathematical logic at the 
Moscow University) attempted to lay the grounds for an ana- 
logy of a different kind, at which the class of A sets is 
compared not with the class of enumerable sets, but another 
broader class. The latter consisted of the results of the 
application to solvable sets of an operation analogous to 
the well-known A operation of P. S. Aleksandrov, and, as was 
proved later, was broader than the class of "arithmetic" 
sets. However, the fact that other aspects of this analogy 
have not been v/orked out has hindered the possibility of 
making it sufficiently convincing.  In addition, at that 
time it was apart from the principal trend in the work on 
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mathematical logic, which had a greater tendency of con- ' 
cehtrating around the problem of the theory of algorithms 
and eohstructivization of mathematics, the value of the 
development of:'problems connected with classification of ' 
sets which are not "arithmetic-' to'provide answers for 
many questions ih the constructive mathematics itself» 
begin-to become'blear only later« '  :-" ■'■ •■. 

Nevertheless; A. If. Kuzhetsov refilled gradually 
the principles of the new analogy, proposed by him. He '•■■■ 
first noted that it'is possible to carry.out a sufficien- • 
tly good analogy betv;een Kleene's' hierarch of "arithmetic' 
sets'";and the Borel'hierarchy: of those 'classes of B sets, 
the numbers of which are finite" in the latter hierarchy. 
This analogy-was based on the correspondence between1the ' 
quantörs of generality and existence (relative to nume-? 

rieal variables) and the operations of (dehumerable) in- 
tersection and joining. In addition, he established   • 
thereby a;closely related analogy between Baire *s hier- 
archy' Of the first « classes of:B functions and a cer- 
tain natural hierarchy of "arithmetic" functions, i.e'.,. . 
functions the graphs of which are "arithmetic" sets). 
Ihe latter,are classified here (as in the case of aBaire 
hierarchy) by the number of symbols of the limiting trahsi-^ 
tions, with, as shown during the sarae time (194-9 — 1951), 
the n-th class includes those and only those "arithmetic" '■"■'■ 
functions,'■the graphs of which are'simultaneously also 
Pn+1 and"SQ+1 aets# :La*bei> on> (already in' 1952) A. V* 

Kuznetspv simplified the above-mentioned analogue of the; 
A operation-'(after which it appears as follows 

where 8 is the result'of applying ah operation to the pre- 
dicate R) and constructed a corresponding analogue between 
the Luzin sieve'operation, and also showed that with the 
aid of the existence quantor over a variable that runs over 
a continual region (for example, the region of numerical 
predicates or numerical functions), it is possible to cons- 
truct an analogue of the ordinary projection operation," .■' 
which serves as the basis for the Luzin classification of 
protective sets. All these operations (the analogues of 
A operation, net and projection) were found to yield upon. 
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single application to general-recursive predicates the same 
class of predicates, which A. V. Kuznetsov called A« predi- 
cates. The laws of separability for (the corresponding) A« 
sets were found to be quite analogous to the laws of sepa- 
rability for A sets. With this, the analogues of B sets, 
called B* sets, were defined analogously to the ordinary 
manner (i.e., as sets which are simultaneously both A* 
sets and complements' of such sets). For the sieve analogue 
there was constructed an apparatus of indices, analogous 
to the well-known one for the ordinary sieve, and it was 
noted that upon application of the sieve to solvable sets 
(to general-recursive predicates) the indices cannot be dif- 
ferent from primitive-recursive (in that sense, that they 
are transfinite, defined by primitive-recursive orderings). 
Prom this A. V* Kuznetsov obtained in the same year, 1952, 
the following theorem: 

Any B' transfinite is primitive-recursive.  (A tri- 
vial consequence of this is that any A« transfinite is 

primitive recursive.) 
It was thus found above all that the general concept 

of a constructive transfinite cannot be described even by 
B» predicates: in the opposite case one could by the dia- 
gonal procedure construct a B« transfinite which is not 
constructive (i.e., which is known to be not primitive- 
recursive). This example is a good illustration of the 
great role that can be played by considerations, which ap- 
pear to be utterly non-constructive, for the clarification 
of the nature of constructive mathematical objects and 
theory. 

Later on (1955) A. V. Kuznetsov observed that the 
concept of the Bf function is closely related with the 
regions of general-definiteness of partially-recursive ope- 
rators (see Section 7 of the present article). In the 
joint work of A. V. Kuznetsov C2J  and B. A. Trakhtenbrot 
£ 5_j7 there was introduced the concept of an effectively 
closed point of Baire space J. It was found that the ef- 
fectively closed point is such a point for which there 
exists a partially recursive functional, general-defined 
everywhere in J, in addition to this point, and that B1 
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functions  are such functions, which are primitively-recur- 
sive relative to the functions that are effectively closed 
points in J. Prom this it follows that no matter how far 
in the classification of B» functions, for example in the 
transfinite classification of Kleene-Mostowski, there are 
effectively closed points and this means that there exist 
partially-recursive functionals, which are generally de- 
fined everywhere with the exemption of these effectively 
closed points, which as far as desired, i.e., partially- 
recursive functionals, which are as close as desired to ge- 
neral-recursive. This again cannot be observed by purely 
constructive means, although we are speaking of objects that 
have a direct relation to the theory of algorithms. 

Somewhat later (1952 — 1956), A. V. Kuznetsov rioted 
that it is possible to construct the arithemetic analogies 
of C sets, investigated by Ye* A. Selivanovskiy — C sets, 
obtained from solvable.-ones ,bvMtsrnating the. operations 
of sieve and complemenl;al;iOn*Trespectively A1 operations 
and complementation), the class of which was found to be 
narrower than the class of analogues of protective sets 
(i.e., sets which Kleene called later on "analytic")« In- 
deed, the analogue of the well known theorem that any C 
sets belong already to a second class of protective sets, 
was found to be true. 

5. By virtue of the well-known Goedel theorem, any 
"arithmetic" predicate can be obtained with the aid of ope- 
rations of narrow calculus of predicates from the predi- 
cates "x ■+ y = z+ and "x * y = z." It is natural to raise 
the question of what predicates and what means can yield 
all the B' predicates, and their analogues in the descrip- 
tive set theory — B predicate — and also the analogues of 
"arithmetic" predicates in the sense of the previous analogy 
—protective predicates. Examples of answers to these 
questions (or on the corresponding questions concerning the 
functions)2are the following theorems obtained by A. V. 
Kuznetsov. * 

1, In the work of A. V. Kuznetsov /"s 7 and B. A. Trakhten- 
brot £ 5_J  the B' functions are referred to as "functions 
reducible to effectively-closed points." 
2. Certain of these, and also some earlier mentioned results 
we re re p o r t e d • ;|atem:f ä; J^^B^^^^MM^$vä^ oj* loathe ma t i c al 
Congress (July 1956). 
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I. From the predicates "x + y - z,rt "x • y - ■•" ' 
(considered as those following in the object region of 
real numbers), »x — integer" and all possible predicates 
of the form "x » c" where c is a real, number, it is pos- 
sible to obtain, with the aid of the operations of the 
narrow calculus of predicates, all the' protective predi- 
cates and only these predicates» 

II. For any B' predicate S there exists such a  L 
V predicate T and such a formula of narrow calculus of 
redicates QffP^Pz, ft) *"■<* after insertion in the 
>lace of the predica'teJvariable P3 of the pr&äicate 
"x» * y"1* uniquely defines (on the object region of the 
•natural numbers) a pair of predicates S and T, i*e., it 
becomes equivalent to the statement' "P^'ia'S and P2 is 
T. 

III. For any B1 function f there exists such a 
B« function g and such a system.of functional equations 
(3 , which uniquely defines on the region of natural 

•lumbers a pair (of .everywhere defined) functions f and 
g and, apart from the signs of these defined functions, 
and the functions x', contains no other signs of. func- 

tions. :  „      j.     * -a   **„„ 
IV.'. The same as in III, with replacement of B for 

B» everywhere, the natural numbers of real numbers, and 
the functions x' by functions x + y, x •" y, and all pos- 
sible constants. .:■ *v • ' ■ 

A. V. Kuznetsov raised questions concerning tne 
continuation of the foregoing analogies further and con- 
cerning search for new analogies. In particular, the 
question was raised of what is the class of those predi- 
cates, defined on the object region of real numbers; 
rfhich can be obtained from protective predicates (or 
•from the much more simpler ones, listed in theorem I of 
the present item), with'the aid of operations of calcu- 
lation of predicates of the second degree (i.e., with 
quantors by variable predicates). As noted by A. Y. 

.i;—The function "prime" relates tb the natural number x 
■the following number x■ + 1. V. 
2. See N. N. Luzin, Certain New Results of Descriptor 
Theory of Functions, Mosoow-Leningrad, ÖITTI, 1935» 
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Kuznetsov (1952), .the.''class'.-of-.such predicatee: -Is-. broader''- • 
than the class of predicates corre spending-''.to\sete that , . 
enter-'.in the well-known classification of,.^effective sets 
by P. 3« Hovikov. '* ■'■'■;■■':■ •'"■- 7 '' 

■ : .6. In-.studying various type s:-of''-definitions, of 
the.:concepts."of the B'. functions',,: A. V; : Khsnet'sov. observed 
that, the :BV..function, 'can be characterised iri a .certain ^ 
sense as' computable.' with the rule of ^infinite, induction. :..". ■ 
In fact? for any B' function f( x ,;;. ,,x.) there exist . 
such g .and <g ,V which satisfy all the conditions of the" 
theorem: III,- it em :3 V'! :&nd; in- addition, the following .«on-'. 
ditlon: by means- of rules a) of-substitution of terms,-. '.'; 
b). replacement of-a-, term by an equal terra,' and' e) .rule of \   : 
infinite induction, for all natural numbers '.a,, *... *a •; b ' ' ; 
the equality: f (ary:.... »'a: ').-*■ b is derivable- from- <&   , when 
and- only-: when it"1"is .t.3?u§v-:'-'9}.his- v/ae generalized by. A.■ V. • -/- 
Kuznetsov at the Third,Allf~Unioh MathematicaliGongresa .y 
in. July 1956.i •/Onrthe .same.', day., and.:in 'connection.with 
these results,-' and. also -several-re suits reported atrthat: 

time, by .B.'/Ya.- Palevich (see Section 12.,. Item.-'8.):' at the''-;,'-. • 
cession of the .Section'of .Hathematical.;-logic of: the.. Opn-^- „• 
gressj-a conversation .arose.-on the possibility ' of • cons- : .. ' 
truc-tiKa-tion of. these results.- P. - S.: Kovikov proposed'a ~. 
constructivize.d. variant of .the rule-of. in-finite .induction,'- . 
which, was called-the ."constructive öarnap ' rule,'1'".or-rul.e;-^ . 
of' cönätru'Ctiv.elyrinfinite induction. _ .P. 3. .JSbvikoy,'•. - 
raised-,-in..particular, the question..of whether it .'is enough 
to add - this • rule... to., the- ordinary logical-arithmetic cal- 
culus, in order to make-the • latter one .complete ;■ l!his> ' 
question was answered in  the affirmative in the fall of 
the same year by A. V. Kuznetsov (reported in detail at 
the Seminar on Mathematical logic at the Moscow Universi- 
ty, 'February-March 1957 and 'at the Sessionjjf the Moscow 
Mathematical .Society on 12 March 1957 / 5„/) • Ke arrived 

1. See I... 1.. Iiuzin, Certain New Results of Descriptor. 
Theory of Functions, Moscow-Leningrad, OHÜI, 1935. ' -. 
2. 1'he rule of infinite'; induction'; (ili..other.;v;ords, the 
Carnap -rule) 'consists, of. the following; if all the for- 
mulas of the sequence ^ (0)f '#' .(i), ..., ^ (n),'..., ' 

are proved, then the formula Vx % U)   is also proved. 
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at this'result by descriptive estimates of the correspond- 
ing classes of formulas, detailed analysis of the analogue 
of the sieve operation, and the chain of reducing certain 
calculus to others, although in the final proof the first 
two of these items were eliminated. 

The corresponding completeness theorem was proved 
thereby also for the Oase when'the logical^arithmetic cal- 
culus contains ouch formulas with predicate and functional 
variables, although in the latter case only on the one side: 
any identically true formula is provable» For the refuta*- 
bility * of any formula in the last calculus, which is not 
identically true, the addition of the above-mentioned rule 
was found to be insufficient, owing to the fact that the 
set of such formulas is not a CA1 set (i.e., is not a com- 
plement of the A' set). 

The question of the constructiveness of the formula- 
tion of the result of A. V. Kuznetsov &t least for the oases 
of ordinary logical arithmetic calculus) has given rise to 
a discussion (at the Seminar on Mathematical Logic), arising 
at the initiative of A. A. Markov, which casts doubts on the 
constructiveness of the definition of the rule of construc- 
tively-infinite induction in view of its connection with the 
general concept of constructive transfinite, the definition 
of which, as noted above (item 4-)\, contains non-constructive 
moments. In this connection P. S. Novikov, in a paper read 
at the Seminar on Mathematical logic on 22 May 1957, indica- 
ted several ways for further constructivization of the con- 
cept of constructive transfinite, the concept of a formula 
provable with the rule of constructively-infinite induction, 
and an entire class of related concepts. 

1. The refutability of a formula is taken here to mean, for 
example, in that sense, that its addition as a new axiom 
makes the calculus contradictory (it is assumed that the 
rule of substitution is contained in it). 
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Chapter III 

MATHEMATICAL APPLICATIONS OP THE THEORY OP ALGORITHMS 

" ' 1' 
9. Algorithmic Questions of Algebra 

1. As soon as ah' exact definition of the concept 
of the algorithm y/as found, it became possible to prove 
the presence of uhsölvable algorithmic problems in mathema- 
tics* This was first made by the American mathematician 
Church, who proved the unsolvability of the "general prob- 
lem of solvability" for the calculus of predicates.  The 
algorithmic problem the unsolvability of which was proved 
by Church, is formulated in mathematical logic itself* 
This result alone could not solve the problem of the place 
of the unsolvable algorithmic problems in mathematics. .The 
following question remained unclear: can such problems be 
actual algorithmic problems, concerning very widely.spread 
functional concepts of mathematics? 

This question was solved partially in 1947 by the 
Soviet mathematician A. A. Markov £""50^  and by the Ameri- 
can E, Post, who simultaneously and independently of each 
other constructed examples of associative systems, i.e., 
semigroup) with an unsolvable problem of identity. The prob- 
lem of identity is connected with one of the widespread me- 
thods of specifying algebraic systems (groups, semigroups, 
etc.)» namely specifying them with the aid of forming and 
defining relations. Y/ith this, the elements of the speci- 
fied system are represented by words made up of formants, 
while the same element is represented by an entire, class of 
words which are generally speaking different in their nota- 
tion. The words that represent the same element.in such a 
specification, are called "equivalent" or "equal."= The prob- 
lem of identity, which is formulated for finite-definite 
systems, i.e., for systems, specified by ä finite number of 
formants and relations, consists of finding an algorithm 
that makes it possible to ascertain whether an arbitrary 

1. This section was written by S. I. Adyan, 
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pair of words of the considered system are equivalent to 
each other, in this system or not. 

By unsolvability of any particular algorithmic prob- 
lem is understood the impossibility of a corresponding 
algorithm. 

The proof of the unsolvability of this problem of 
identity for associative systems made it possible to solve 
the question of solvability of mahy" other algorithmic prob- 
lems,' concerning groups, semigroups, matrices, etc. An 
example of a semigroup with Oonstruction with an unsolvable 
identity problem was constructed by the Englishman Turing 
in 1950. 

It should be noted that the concepts of an associa- 
tive system (semigroup) and a semigroup with contraction 
appeared in mathematics as a result Of a logical analysis. 
Of the concept of a group, which is one of the most impor- 
tant and widely spread oncepts in mathematics. Therefore 
the problem of identity in group theory, formulated already 
in 1912> has occupied a pl&ce of special significance among 
other problems of this kind.  It was studied by many oOViet 
and foreign mathematicians. In 1952 the Soviet mathemati- 
cian P. S. Novikov / 27_/ proved the unsolvability of this 
problem, by constructing an example of a finite-definite 
group with unsolvable problem of identity.  In 1957, a 

■paper by P. S. Novikov / 30_/, devoted to the proof of this 
result, Was awarded the Lenin prize;  as expected, on the 
basis of this result within a relatively short timej nume- 
rous other results were obtained by P. S. Novikov, A, A. 
Markov, S. I. Adyan, G, S. Tseytin,' and K. A. Mikhaylova. 
These results will be discussed later. 

: This has led to the formulation of a new trend in 
mathematics, engaged in problems of existence of certain 
algorithms. 

-"'•"■'2.' Algorithmic problems for associative systems 
were studied by A. A. Markov and his student G. S. Tseytin. 

- The problem of right (left) divisibility for asso- 
ciative systems is formulated in the following manner: 
it is required to find an algorithm, by means of which one 
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icould for any two elements Q and R of the system \%i t 
recognize whether there' exists in '%    such an element X, 
that the relation IQ ~ R (or respectively QX -  R) is sa- 
tisfied in the system '%'■ .. r An 'example of an associative 
system with unsolvable problem ofjright-, divisibility was 
constructed by A. A. Markov L'SlJ  in 1947, and in this 
associative system were solved both the problem of iden- 

jtity and the problem of the left-divisibility. 
A. S. Markov in .1951 L'^J  Proved the unsolvabi- 

lity of the general problem of commutabilit^,of matrices, 
which is formulated in the following manner: let 
Ü-, Up,.,.,TJ be square integer matrices of order n. We 
snail say of^a matrix U of order, n'that it can be repre- 
sented in terms of TJ_ » U , . ..,U if there exist natural 

numbers  .jMit'>i"^(K'v<i?K such that 

The general problem of representability for"matrices of 
order n consists of finding an algorithm, by means of 
which it is possible to recognize, for any system of ma- 
trices U_ ,' U?,,..,U of order n, whether an arbitrary 
matrix TJ is representable in terms U_ , TJ-,,.»,U ♦ 

The  particular problem of commutability ro-r a 
fixed system of matrices Ü. , U?,«..., U of order n con~ 
sists of finding an algorithms by means of which it would 
be possible to reconize whether any matrix.Ü of the same 
order is representable in terms of IL , U ,...,U . In 
1951 A. A. Markov / 44-J7 constructed a system or 102 ma- 
trices of sixth order, for which the particular problem 
of representability is unsolvable, i.e., the algorithm 
sought in the problem is impossible. It followed from 
this that the general problem of representability is 
unsolvable for any ;'n>6;. Later on  (at the Seminar on 
Mathematical Logic at the Moscow University, October 
1957) A. A, Markov showed that the general problem of re- 

" presentability is unsolvable already for [A>4- . 
The simplest example of an associative system with 

unsolvable problem of identity, given by A, A.-. Markov 
/~48j7, contained 13 forming and 33 defining relations. 
G. S. Tseytln in 1956 /~3_7, leaning on the result of 
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— -i~ ■   . 
:P. 3. Novikov concerning the .'existence of a group with  ! . 
unsolvable problem of identity, constructed an associative 
system with, five forming elements and seven defining rela- 
tions and with an unsolvable identity problem. In recent 
time, using this example of G. S. Tseytin, A. A. Markov 
constructed a system of 27 matrices of sixth order, for 
which the corresponding particular problem of represen- 
tability is unsolvable« I'he same result by. G» 3. Sseytin.. 
makes it possible to simplify the example of the group of: 

P. 8. Novikov with unsolvable problem of identity» 
By K-system we shall take to mean henceforth a 

finite-definite associative system, i.e., associative sys- 
tems with finite alphabet, and a finite number of defining 
relations. 

An arbitrary property d   of K systems is called 
invariant if any K system, which is isomorphic to any 
other K  system with a property j£ ,...has . in itself that' pro- 
perty.^'For'ary Invariant property "cl   ahd>!lh|,'"'flhiite al-;,,; 

phabet A, there is formulated the problem of recognition 
of the property of_ $  for the-alphabet A. .It is re- 
quired to find an algorithm by means of which one could 
for any finite system of defining relations» written in 
the alphabet A, indicate -hether the K system defined^by 
it has* the* property a-    .  In 1951 A. A» Markov / 43_y 
proved the following theorem. 

Let &    be an invariant property of K systems.  If 
there exist both a K system .with this property as well as 
a K system that is not included in any K system with this 
property, then there exists an'alphabet, for which'the 
problem of recognizing the property JH     is unsolvable. 
If at the sane time there is a K system v/ith property   , 
defined in p letters, then for alphabet with number of 
letters greater than p'+' 4- the problem of recognizing the 
property is unsolvable. Among the properties  <at which 
satisfy the conditions of this theorem, are, „for example, 
the following properties; 1) unitarity, 2) finiteness, 
3, semigroup property, 4-) inclusion in group calculus, 
5) solvability of the identity problem, etc. 

A general theory of associative "calculi, which 
represent the specification of-K-systern with the aid .of 
forming and defining relations, together with a proof of 
.his foregoing results;,-were treated«by^jA.iA^^Markov in ■i\\-.:. 
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his monograph £ 4-Sj/.  «_ ■ ■ ■ 
G..S. Tseytin 2 2_/ improved the last result of 

A, A. Markov, proving'that the theorem is true for alpha- 
bets which contain not less' than"p + 2 letters. He proved 
in the same place that this, theorem in the formulation 
given cannot be extended to a p + 1 «letter alphabet, it 
proved that for any flSr-0     there exists an invariant pro- 
perty Ü of K systems such that there exists a K system ._ 
'not included in any K system with the property Ü , and 
there exists, a K system in a p-lett@r alphabet, Saving 
the property U , but for any alphabet .containing more 
than p + .1, the problem of recognition of the property ÜJ 
is solvable. Such a property IT. is the following pro- p 

perty: "$o be dsomorphic to a free associative system with 
p formants." 

From'. 1954-' through October 1957 a seminar was in 
session at the Moscow State Pedagogical Institute imeni 
V» I. Lenin on algorithmic problems of algebra, under the. 
leadership of P, S. Novikov (henceforth identified as the 
"Seminar of the MGPI")« Many of the results on algorith- • 
mic problems, concerning groups, semigroups, universal- 
algebras, etc.,were obtained by members of this seminar 
P. S. Novikov, S. I, Adyan, A* ?. Kuznetsov, and K. A. 
Mikhaylova'. 

To prove the unsolvability of the problem of iden- 
tity of group theory, P. 3. Uovikov developed a theory of 
transition and quadratic-transition letters,, proving a 
system of lemmas on the transformation.of words into 
groups with participation of the indicated letters. These 
lemmas, which permit establishing the inequality of various 
types of letters in groups, have found application in the 
proof of other algorithmic and purely-algebraic results of 
P. S, Ifovikov and S. I, Adyan. 

A trivial consequence of the unsolvability of the 
identity problem of group theory, proved by P-. S. Kbvikov 
£""50 J  is the unsolvability of the well-known, general prob- 
lem of conjugateness. A particular problem of conjugate- 
ness for a given group P consists of finding an algorithm, 
which permits for any* two elements X and Y of group I to 
recognize whether they are conjugate to each other in P or 
not (two elements X and Y of group P are called conjugate 
in P if and only if there exists in P such a third element 
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Z such that X = ZYZ  in group P).  In the general problem 
of conjugateness it is necessary to find a single algorithm 
for all groups. Here the unsolvability of the general prob- 
men is also proved by indicating an example of an unsolvable 
particular problem* namely, in a group with an unsolvable 
problem of identity one cannotj301ve the problem of conju- 
gateness. P. S. Novikov £  29__/ has also constructed a 
simple example of a group with unsolvable problem of con- 
jugates ss. 

Both the problem of identity and the problem of con- 
jugateness of group theory have a topological interpreta- 
tion. As is known, any finite-definite group is a funda- 
mental group of a certain polyhedron. To each word in the 
fundamental group there corresponds a closed path on the 
polyhedron, passing through a fixed point 0, With this, 
two closed paths, passing through a point Q, will be con- 
nectively homotopic (i.e., continuously deformable one 
into another for a moving point 0) if and only if the cor- 
responding words of the fundamental group are conjugate to 
each other. Prom this we obtain the following interpreta- 
tion of the results of P. S. Novikov. 

There exists such a polyhedron that it is impossible 
to obtain an algorithm that would permit for any pair of 
paths, passing through a fixed point of the polyhedron, 
to recognize whether they are connectively homotopic to 
each other or not (respectively for problems of conjugate- 
ness: whether they are freely homotopic to each other or 
not). 

4.  The general problem of isomorphism, consists of 
finding an algorithm, which would permit for any pair of 
groups, specified with the aid of a finite number of form- 
ing and defining relations, to recognize whether they are 
isomorphic to each other or not. 

A particular problem of isomorphism, formulated for 
a specified finite-definite group P, consists of finding an 
algorithm that would permit for any finite-definite group 
to recognize it is isomorphic to the group P or not.__ 

P. S. Novikov, on the basis of his work £  30_/ proved 
(March 1955), (Seminar of MGPI) the unsolvability of the 
general problem of isomorphism. His student S. I. Adyan 
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;/ 1_/, leaning on the same investigation, proved in 1955 '■. 
that the particular problem of isomorphism for any'finite- 
definite group is unsolvable. At the same time he .proved 
the unsolvability of a broad class of algorithmic prob- 
lems of recognition of group properties.  In particular he 
proved the non-recognizabiiity of such group properties as 
unitarity, finiteness, periodicity, commutativity, sim- 
:plieity, nilpotehoe, solvability, freedom, abil£i;y of''""' ^ 
having a free subgroup, etc.  In the proof of these re- 
sults S. I. Adyan introduced the concept of a quasi- 
transition letter and proved for it several lemmas, ana- 
lagous to the lemmas of P. S. Novikov, for transition let- 
ters, and particularly the lemma of the exclusion of the 
insertions of 'a quasi-transition letter in sequences of 
conversions of v;ords. Unlike the transition letters, the 
quasi-transition letters have that characteristic feature, 
that even as a result of transformations that do not con- 
iafe insertionseöiPstth%se^letter#| their numbir^ah ^n^ease 
without limits.  They so to .speak "generate each other.." 

Leaning on one of these results (specifically, on 
the non-recognizability of unitarity groups), A. A. Markov 
proved the unsolvability of the problem of homeomorphism 
of polyhedra. He constructed such a four-dimensional 
polyhedron, that it is impossible to obtain an algorithm 
which would define for any arbitrary four-dimensional poly- 
hedron whether it is homeomorphic to this polyhedron or 
not.  (The polyhedron constructed by him is a maniforld). 
This result was reported by A.A. Markov at, the Seminar on 
the Applications of Theory of Algorithims at the Mathema- 
tical Institute imeni A. A. Steklov on 23 January 1958. 

using the same methods as in reference £!_/» S. I. 
Adyan £ 5_J  proved the following theorem on unsolvable" 
problems of recognition of group properties, analogous to 
the above-mentioned theorem of A. A. Markov on unsolvable 
problems of recognition of properties of associative 
systems: 

Let .«" be a certain invariant group property. ^ If 
there exists both a.  finite-definite group 'having the pro- 
perty «i and a finite-indefinite group which cannot be 
imbedded in any finite-definite group with this property, 
then it is impossible to obtain an algorithm that would 
.permit us to re'eog&ize whether any finite-definite sgroup. f 
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lias the property ;*. or not, ' 
An algorithm that defines, for any finite-definite 

group, whether it coincides with its commutant (i.e., 
whether it becomes unit group or if one adds the commu- 
tation relation for the formants), is very simple to cons- 
truct. This is an algorithm that permits to ascertain 
whether any Abel group is unitary or not;. therefore from 
the last theorem of Adyan it follows that any finite-   .__ 
definite group is imbeddable in a finite-definite group, 
which coincides with its oommutant.      #v 

The class of finite-definite groups we shall call 
complete if any finite-definite group is isomorphic with 
any other subgroup of a certain group of this class. It 
is obvious that in every complete class of groups there 
is a group with an unsolvable identity problem. Conse- 
quently, for any complete class.of groups it is impossible 
to obtain an algorithm that solves the problem of identity 
for all groups of this class. S, I. Adyan calls a class 
of finite-definite groups K  as effectively complete, if 
there exists an algorithm, which in accordance with any 
finite-definite group- F  indicates a group F* from the  - 
class K, with a certain subgroup to which P is isomorphic 
and furthermore in such a way, that if the group 1  belongs 
to class K*, then the corresponding group ?*  coincides with 
F^ He established that the theorem proved in reference 
/*5_7, on the unsolvability of problems of recognition of • 
group properties, remains in force if instead, of the class 
of all finite-definite groups (which obviously is effec- 
tively complete) one considers any prescribed effectively- 
complete class of groups, i.e., if one reojiires of the 
sought algorithm that it solve the problem not for all 
finite-definite groups, but also for groups of a speci- 
fied effectively-complete class (Seminar on Application 
of the Theory of Algorithms at the Mathematics Institute 
imeni V. A. Steklov, 20 February 1958).' 

We shall call a finite-definite group as condi- 
.tionally-unitary relative to a given system of identical 
relations, if the addition to the relation of this group 
of the-considered identity relations converts it into a 
unit group. 3. I. Adyan proved that the class of groups, 
which are conditionally unitary relative to any given 
system of non-trivial identical relations (i.e., relations 
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■ which are satisfied not in. any group), is complete.   ""! 
Proved in the sane place that the class .of finite- 

definite groups, specified by a finite system of mutual- 
ly-conjugate fomants, is .complete. Both theorems are 
proved."by effective embedment of an arbitrary finite- 
definite group in a group of a class, the completeness 
of which is proved.      ....■■.■'__'.     ■ -i  - -^i 

;      5. In 1955,' S, I. Adyan. ^/ 2_/ proved the non- 
' solvability of the problem of right (left) divisibility 
for semigroups with contraction (.as indicated above,the 
corresponding problem for associative systems was solved 
by A. A. Markov).  The-problem of whether there, exists 
in a half -group with contraction and non-solvable problem 
of right (left) divisibility and solvable problem of 
identity, remained open, since in the semigroup given, by 
S. I. Adyan with contraction, the problem of identity is 
also not solvable. '• 

3?he part4cjil$m#3^ 
verse element for a given semigroup G with rule of can- 
cellation and with unity lies in discovering an algorithm, 
which would permit'for any element XfÖ to indicate 
whether there exists in G an element inverse to it, or ■ 
not (the element ¥$& is called inverse for 'X'ßG'r    'if 
and only if the equality H  ~ 1 is satisfied in Gr).  In 
the general problem of the existence of an inverse ele- 
ment it is neoessary' to find a single algorithm for all 
finite-definite semigroup's, with cancellation. In 1955 
S. 1. Adyan proved /m2_J  that the general problem of the 
existence of an inverse element is*not solvable, although 
it is impossible to construct a specific finite-definite 
semi-lattice with unsolvable particular problem of exis- 
tence of the inverse element. "-"'(Up to then the uhsolvabi- ' 
lity of any'general algorithm problem was proved by cons- 
tructing an example of an Unsolvable particular problem. 
Here this road was closed.)  3. I. Adyan gave also an 
example of a semigroup with an enumerable number of ef- 
fectively specified defining relations and unsolvable prob- 
lem, of existence of the inverse element. 

The methods used to prove the .unsolvability of al- 
gorithmic problems have permitted 3. I. Adyan to clarify 
the role of the lav/ of cancellation in the specification 
of semigroups w^|h,ithe..aid ,p£^fining re.lal5ions.^w31h^;fä;;...: 
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• following question was raised:  can one specify any     • 
finite-definite semigroup with cancellation rule as a. . 
semigroup without the cancellation rule (i.e., as an as- 
sociative system) and furthermore also finite-definite. 
If one does not require finite-definiteness, then an 
affirmative answer to this question is obvious»  S. I.  , 
Adyan / 6_/ constructed a finite-definite semigroup with 

..; cancellation rule,- which cannot--be specified without the s.. 
rule of cancellation by a finite number of defining rela- 
tions. It was found that the cancellation,xule 

i XA mXB —*> A »B 

cannot be replaced even by a finite number of mixed rela- 
tions, i.e., relations which can be written only by equa- 
lity of words, in which together with the formants there 
are also variables. This result shows that finite-defi- 
nite subgroups with contraction law cannot be included in 
the general concepts, of finite-definite algebraic systems. 

6.  The detailed proof published in 1955 by P. S. 
Novikov of the unsolvability of the problem of identity of 
the theory of groups leans on the result of Turing on the 
unsolvability of the problem of identity for semigroups 
with cancellation. '*■ Since the Turing paper with this 
result was' carelessly written and contained incorrect 
lemmas, the question was raised of a proof of the theorem 
of P. S. Novikov without using the indicated result by 
Turing. P. S, Novikov used the result of Turing only to 
construct a semigroup with.one-sided cancellation and an 
unsolvable identity problem, on the basis he then const- 
ructed a group with unsolvable, identity problem. In 1957 
P. S. Novikov and S. I. Adyanfc* constructed jointly an 
example of such a semigroup based not on the result of 
Turing, but on the result of A«. A. Markov and of Post on 
the associative system with unsolvable identity problem. 

P. S. Novikov.says that the semi-group G is repre- 
sentable by means of group P, if one can separate in P a 

1. A. M. Turing, The Word Problem in Semi-Group's with Can- 
cellation. Annals of Mathematics. 52 (1950), 491 — 505. 
2. P. S. Novikov and S. I .""Adyan.  The Problem of Identity 
for Semi-Groups with One-Sided Cancellation. 2. P. math. 
Logik and Grundl. d. Math. (1958), Vol. 4, 1 — 24.    ! 
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^subset of element's F?, which is algorithmically reduced "V 
in a mutn.al~unlq.ue correspondence with a set of elements 
of the semi-group & in such a manner, that e^ual elements 
in S corresjxmd^to equal elements in Fand vice versa. In 
his paper / 30__/ he proved also the following theorem, 
which is of independent interest. 

For each finite-definite semi-group G there exists 
;a finite-definite group P, with the aid of which it is 
'possible to represent the serai-group G, 

7. In spite of the unsolva'bility of the general 
problem of identity for serai-groups and for groups, it is 
of interest to solve the problem of identity for various 
classes of groups, semi-groups, etc. 

As early as in 194-7 V» A. lartakovskiy proved that 
if the left halves of the defining relations of a finite- 
definite group "do not superpose one on another strongly" 
then the problem of identity for this group is affirma- 
tively solved. She degree of superposition of the defin- 
ing relations is characterized by Tartakovskiy in his \ 
paper £*2&:_J  with the aid .of the property of k-oanoellabi- 
lity of the basis of the group (and the greater the super- 
position, the smaller the natural number k), and he solves 
the problem of identity for groups with a k-cancelle'd basis 
for all k>6    . _ 

In 1955 A. I, Mal'tsev / 4-2J7 published an algorithm 
that solves the problem of identity for nilpotent groups. 
In 1957 he solved a more general problem, for nilpotent 
groups. He proved that for any- nilpotent group it is pos- 
sible to map homomorphieally in a finite group in such a 
way that two arbitrary-prescribed subgroups-of the con- 
sidered nilpotent group, intersecting only in a single ele- 
ment, are mapped into subgroups of a finite group, also 
intersecting in only a single element. 

The  problem of identity for Abel groups was solved 
simply, and the corresponding algorithm, was. known for a 
long time. The  commutative semi-groups with cancellation 
are embedded in the commutative groups, from which one 
obtains an algorithm for them, too. For commutative semi- 
groups without the law of cancellation,' the problem of 
identity was solved simultaneously in 1956 by &. S. Tsey- 
tin and by a student of A. I. Mal'tsev, V*. A. Yemelichev. 

8. The  problem of entry for a given group F is ..j 
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formulated in the following manner:  it is necessary to ! 
find such an algorithm', which would permit for each semi- 
group, generated by a "finite number of elements of group 
P and arbiträr-/ element A. of group P, to recognize whe- 
ther A belongs to this sub-group or not. The problem of 
entry is formulated also la weak form, when one seeks for 
each subgroup of group P its own algorithm,. Prom the 
solvability for any one group of the problem of entry 
even in the weak form follows the solvability of the prob- 
lem of identity for this group. .,,,..   _.  - 

On the basis of the aforementioned paper £ 42_/ 
of A. I. Mal'tsev, it is easy to construct an algorithm 
that solves the problem of entry for nilpotent groups. 

Many problems connected with the problem of entry 
were raised by P. S. Novikov. His student, K. A. Mikhay- 
lova, is now.engaged on these problems. On the basis of 
the results of P. S. Hovikov.she has proved that for a 
direct reproduction of two free groups with two formants 
the problem of entry is not solvable in weak form.  This 
result was used by A. A. Markov to prove' the unsolvabi- 
lity of the problem of representability (see above, Sec- 
tion 2) for matrix of order h>* . X. A. Mikhaylova 
proved that the problem of entry for a direct product of 
an Abel group and a group with solvable problem of entry 
is solvable. She also established that it is impossible. 
to prove the unsolvability of the weak entry problem for a 
direct product of a group with a solvable weak entry prob- 
lem and another group with a solvable entry problem, each 
subgroup of which can be specified by a finite number of 
forming elements and defining relations.  The foregoing 
results were reported by K. A. Mikhaylova in 1957 at the 
MGPI Seminar and at seminars on mathematical logic and on 
algebra at the Moscow University« 

9. Many necessary and sufficient conditions of 
solvability of the problem of identity for universal al- 
gebras' was given by A. V. Euznetsov. 

An algebra is called finite-generated if it has a 
finite number..of formants and operations. A. 7. Kuzne- 
tsov calls a finite-g*enerated algebra finite-definite, if 
it is specified by a finite number of defining relations 
of general type (i.e., relations in which together with 
the formants there participate also variable symbols). ...; 
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He proved (MSPI Seminar, November 1956) that for""' . 
solvability qf the problem of identity in a finite-gene- 
rated algebra Q/  it is necessary and sufficient that 
this algebra be covered * by a certain simple finite- 
definite algebra £B v (Under simple algebra is meant 
here an algebra which has no non-trivial homomorphisms.) 
The consequence of this theorem is the solvability of 
the problem of identity for simple finite-definite groups. 
A. V. Kuznetsov gave for this particular case a very 
simple algorithm. 

The second necessary and sufficient condition of 
solvability .of a problem of identity for finite-genera- 
ted algebras', found by A. V. Kuanetsov is formulated in 
terms of the concepts of the general-recursive algebra. 
A. J.  Kuznetsov calls an algebra    general-recursive 
if it is either finite, or is isomorphic to a certain al- 
gebra, the elements of which are natural numbers, on the 
operations of which ar$«, general-re cursive functions. He 
proved (MGPI Seminar, March 1955) that for solvability'-of 
the problem of identity in a finite-generated algebra . 
it is necessary and sufficient that it be general-recur- 
sive.  Still another necessary and sufficient^condition 
can be found in the note by A» Y. Kuanetsov £  3<_/. 

With the aid of methods, based on the close rela- 
tionship between the concepts of finite-definite algebra 
and general-recursive function, A. V. Kuznetsov proved 
that it is impossible to construct a "partial algorithm," 
which would, give a complete solution of the .problem of 
identity for any such algebra,'for which the problem of 
identity is solvable (here one does not require at all 
that the "partial algorithm" solve the problem for a given 
algebra, with a solvable identity problem or not.) 

10. Two invariant group properties '*• . and  ? , 
which cannot be satisfied simultaneously in one in the 
same finite-definite group, are called recursive separa- 
ble, if there exist such an algorithm, .which upon specifi- 
cation of any finite-definite group F yields one of the 
answers, positive or negative, whereas if in group F the 

1. One says that an algebra Q3 covers an algebra Q£    if 
the sets of their elements coincide and any operation of 
the algebra O/ is also an operation of algebra "fa 
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the property ■* is satisfied, then the answer is affir- ! 

mative* and if if is .satisfied» then the answer is 
negative, A. WKuznetsov, introducing this concept, 
indicated several simple examples of recursively sepa- 
rable properties. The unitarity and infiniteness are, 
as he showed,- recursively non-separable properties. 

Groups P and C are called constructively different' 
if the property "to be a group,■isomörphic to group F" and 
"to he a group, isomorphic to group GK are recursively 
separable. This concept was introduced byjfc* A. Markov 
(Seminar on Mathematical Logic at the Moscow university, 
February 1957) who advanced the hypothesis that any two 
groups, coinciding with their commutant, are construe« 
tively non-distinguishable, A.'V. Kuznetsov proved that 
a non-Abelian group of eighth order and the results of 
its Abelization (i.e*, addition of the commutability of 
all pairs of elements to their relations of this group) 
are constructively distinguishable. 

10. Constructive Interpretation 
i of Mathematical Formulations.   \: ■ 

Constructive Mathematical Analysis. I        ■ 

1. 'In all-modern mathematical thinking, an impor-r- 
tant position is occupied by the'difference between "cons- 
tructive ,! and "non-constructive." Recently among the ob- 
jects investigated by the mathematics there have been • 
coming to the forefront "constructive-definable objects," 
examples of which are the natural and rational numbers, 
words in a certain alphabet, and other objects, which, 
roughly speaking, can be constructed in a finite number 
of steps and presented for examination.  There exist dif- 
ferent points of view with repect to the methods which are 
admissible in a study of constructive-definable objects. 
One of these consists of admitting, in the study of cons- 
tructive objects, any means used in mathematics. Another • 
admits only specific constructive methods. A study of 
constructive objects by special constructive methods is 
the subject of the constructive trend in mathematics. In 
the USSR this trend began to be developed in Leningrad, 
in the school of A. A. Markov. ...' 
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:  ; ■ . The  abstractions that serve as the basis for mo-~~ 
dem constructive trend-in mathematics were indicated by 
A. A. Markov in his article Z~*4I_/.  These include the 
abstraction of identification, which permits to identify 
"identical" constructive objects, and the abstraction of 
potential realizability, which permits imagining cons- 
tructive objects of as large a "dimension" as convenient. 

.; These do not include the abstraction of actual infinity, 
and therefore within the framework of the constructive'' 
direction one delineates a sphere of action of the law 
of excluded third. Taus,  from the point of view of the 
constructive trend, a study of constructive objects re- 
quires its "constructive5' logic. The  principles of such 
logic were already layed-down by Brouwer»  In the works 
of the representatives of the constructive trend, cons- 
tructive logic receives further development.  Thus, A. A. 
Markov advanced £  4-9, 51J,  as belonging to the construc- 
tive -mathematical logic, the following principle, which 
we shall call the Markov principle:" if there is an algo- 
rithm that permits ascertaining for any natural whether 
it has a property'0, and if the proposition of non-exist- 
ence of a natural number with property 0 has been refuted, 
then there_exists a natural number with the property C, 
A. A. Markov has shown that this principle is used in 
proving many mathematical statements, to some of which it 
is equivalent,  In particular, the Markov principle is 
equivalent to the fact that, any formula of the type 

(6) 

is realizable (in the sense of Kleene). Here x is the 
variable and P is the formula of logic-arithmetic calculus 
of Kleene. At the same time, as shown by A, A. Markov, 
the formula 

is not derivable in the purely intuitionistio calculus of 
predicates. 

The problem of constructive understanding'of mathe- 
matical opinions concerning constructive objects was 
..raised already by Brouwer, who advanced the principle of, j 
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constructive understanding of the opinion on the existences 
of constructive object's and disjunctions.  But no deve- 
loped sufficiently complete theory of constructive inter- 
pretation of mathematical opinions was proposed by him. 
rfhe first important step in. this direction was made by 
A. N. Kolmogorov £  34-J7» who developed the semantics of 
the theory of problems formulated -by means of logical 
connections of calculus of formulation, and established ._■ 
that the logical formulas, derived in the intuitionistlc 
calculus of formulation, expressed types of,these prob- 
lems, which admit of a constructive solution.  The ideas 
of A. I. Kolmogorov were refined and developed (on the 
basis of an exact concept of arithmetic algorithm) by 
Kleene. 

Bach constant logical»arithmetic formula is con- 
sidered by Kleene as an incomplete information on the sol- 
vability of a certain constructive problem; the. interpre- 
tation of the formula lies indeed in displaying this probr- 
lem. N. A. Shanin/"l5, 11 J,   in criticizing the rules 
proposed by Kleene for interpretation, advanced new prin- . 
ciple3 of constructive understanding of mathematical opi- 
nions. According to IU  A, Shamin not all opinions are na- 
turally considered as information concerning the solvabi- ■ 
lity of a constructive problem. Opinions, in which the 
logical connections V. and  1  do not participate are 
not considered in this manner, and understood on the 
basis of extrapolation of a definite part of classical 
logic. As concerns those opinions, which contain cons- 
tructive problems,' rules are proposed (different from the 
Kleene rules) for displaying such a problem. 

2. The separation of constructive objects from 
among the subjects studied in mathematical analysis, and 
a study of these constructive objects by constructive me- 
thods, is the subject of constructive mathematical analy- 
sis (see N. A. Shanin/ 14_/.  In classical mathematical 
analysis a real number is defined as a fundamental se- . 
quence, considered with, accuracy to equivalents of ra- 
tional numbers.  In the constructive mathematical analy- 
sis this concept is donstructivized. First, only compu- 
table sequences of rational numbers are admitted, i.e., 
sequences for which there exists a computable function, 
which gives the n-th term from its number n. Secondly,. ' 
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from among these sequences one chooses only the computa-"l 
bly-converging ones, i.e., those having a computable re- 
gulator or Convergence (ths function f is called a regu- 
lator of convergence for a sequence foj. if from the ine- 
quality k^fifyj&fii)       follows the inequality (•«— «t|<2~'>; 
hereone can restrict oneself only to regularly-converging 
sequences» i.e.» those for which from the inequalities 

•k<i     there follows the inequality   - f%~, ' 
las is laiown,  nou only mono tonic and bounded computable 
sequence of rational numbers is computably-converKing.) 

Thus, the constructive^computable) real number'iß 
defined by A. A» Markov / 49_/ as considered with accu- 
racy to equivalents computable and regularly-converging 
sequence of rational numbers.  1, D. Zaslavskiy £"%J 
proposed two other variants of the concept of construc- 
tive real number, starting with the concepts that he 
introduced for a constructive Dedekind cut.and a cons-'' 
tructive successively contracting Äegral^^Il three   ' 
variants of the introduction of constructive real numbers 
were found to be eonstructively-isomorphic. 

Por constructive real numbers one defines relations 
of a quality and. order, and also of the action on them. 
One introduces the concept of computable and fundamental 
sequences of real numbers, -limits, etc,  There arises a 
unique "constructive continuum" which differs in its pro- 
perties froittJAe ordinary classical continuum (see U, A. 
Shanin/ 14^).  In particular, as shown by I. D. Zaslav- 
skiy £  3, 5_/ there exista such a constructive sequence of 
finite sets of segments -(with rational ends)  ~# -'  'that: 

1)  #,C$<Mi; * 

3}  There exists no constructive real*number, con-' 
tained in all «►  . 

A. A. Markov £  49_/ introduced the concept of a 
computable or constructive function of real variable.  To 
each computable real number one can assign Goedel numbers' 
that define this number of regularly-convering computable 
sequences of rational numbers. Any such number we shall 

1. E. Specker, Sicht Konstriiktivbeweisbare Satze der 
Analysis. Journal of. Symbolic logic 14, No." 3 (1949). 
...154 — 158. ~    """"  ^   ■ ;,;.;l^; 
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■ agree to call as the writing of the considered real num- ; . 
ber. A partially recursive function of one variable is 
called single-valued on the given computable real number, 
if it first is definite for any notation of this number, 
secondly', it converts each such notation into a notation 
of a certain constructive real number, and thirdly it 
converts all such notations into notations of one in the 
isame number. 

Any partially-recursive function ,£ generates, 
obviously» the function of one computable real variable, 
defined for those numbers, on which  X  is single valued; 
functions so specified were called by A» "A. Markov cons- 
tructive or computable.  _.«;'■■ 

in  the same paper £ 4-9_/ A. A. Markov introduced 
the concept of constructive discontinuity and has shown 
that the constructive function, of real variables does not 
have a 'constructive discontinuity at any point.. Later on 
G. S. Tseytin £ lj  proved that any constructive function 
defined on all constructive real numbers, from an arbitrary 
interval, is continuous in. the constructive sense on this 
interval»     ■ • 

Already from these results by A. A. Markov and G. 
S. Tseytin it is seen that the classical and constructive 
functions of real variable "behave" differently. Many 
theorems' in this direction belong to I. D. Zaslavskiy 
2"~3, 5» 6_7* Thus, he established the following theorems: 
lj[ There exists a function, continuous but not bounded on 
£  °» iJ^i. 2) there exists a function, continuous and boun- 
ded on £0, lJ7, but not having an exact (smallest) upper 
limit on it; 3) there exists a function, continuous un- 
bounded, but not uniformly continuous'on £  0, !_/, whereas 
for 8 — 1  there does not exist a corresponding  ->>0 
4) There'exists a_function which is uniformly continuous 
in the interval £  0, 1_/, which assumes on it all values 
between 0 and 1, but.which does not assume values equal to 
its upper limit 1.  It should be noted that the terms en- 
countered in these theorems such.as "continuous," "exact 
upper limit,", "interval £  0, 1_/," are understood in the 
constructive sense; -Shus, for example, the interval 
£  o, l_j7 is considered to consist only of constructive 
real numbers.        _„■■'■" 

in  their paper £  4_/ I. D. Zaslavskiy and G. S.   
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Tseytin established the existence of a function which is 
not integralable for any of the generalization integrals 
that they define. In paper /\y I. D. Zaslavskiy intro- 
duced the constructive analogues of the concept of a func- 
tion öf bounded variation and of an absolutely continuous 
fühötioh and investigated their properties. 

'G, S. Tseytin/ 1, 5_/ considered constructive ana- 
logues of the following theorems and mathematical analy- 
ses; 1) Any sequence of closed intervals included in each 
other has a common point; 2) the first Cauchy theorem (on 
the vanishing within an interval of a continuous function, 
assuming different signs on its ends); 3) the second Cauchy 
theorem (that a function, continuous in a closed interval, 
assumes there all the values intermediate between its 
values on the end); 4) the Rolle theorem, 5) the Lagrange 
theorem (the finite-increment formula)« 

The formulations of all these theorems have a cer- 
tain similar appearance. In fact, it is stated in each of 
these that for any object of a defined type there exists 
a real number, which is in a definite relation to this ob- 
ject.  If one reinterprets all these theorems constructive- 
ly, wherein not only the objects themselves (numbers, func- 
tions, etc.) are replaced by corresponding constructive ob- 
jects, but the logical connections are also constructively 
interpreted, then each theorem becomes a statement of the 
existence of an algorithm, which gives from the writing of 
a certain object the writing of a constructive real number, 
However, as shown by 6. S. Tseytin, for all the five state- 
ments obtained such algorithms are impossible. With this, 
for the Cauchy and Rolle theorem of included segments such 
algorithms will be possible, if one changes the concept of 
writing of a constructive real number in such a way, that 
in the writing (in the new sense of the word) is contained 
information on the computable sequence which defines a real 
number, but not on its regulator of convergence (although 
it should exist ),__  __ 

In article /_  14_/, N. A. Shanin noted a method of 
constructing a constructive measure theory. The concept 

1.  "It cannot not exist," in the terms of constructive 
logic. 
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proposed by him of a measurable set is riot (as in clas- • 
sical mathematics) a specialization of the concept'of the* 
set../.Measurable sets according to N. .A. Shaniri do not have 
any elements! A measurable set is defined as a converging 
(in a definite sense), computable sequence of finitei-eol-, 
lections of segments, .with rational ends., and the .measure . 
of the measurable set is the limit of the measures .:(natu- 
rallyjlefined) of. these finite collections.  In article 
/ l4_/ there are introduced concepts, of.sequences of mea- 
surable sets and limits of such a sequence, and the ques-,■■- 
t ion. of the similarity and differences; between construe-' 
five and classical measure theory are analyzed; ways, are. . 
also .indicated of developing the.concepts of constructive 
functional analysis. 

■3.  In-order to. understand the results of the cons- 
tructive trend, it is not essential to adhere to the ■ 
point of view of constructive logic.  These results, as 
were seen above, are converted in classical "language" . : 

with the aid of the concept of the algorithm and a compu- 
table function. V. A. Uspenskiy in the:article /_  13_/ 
undertook, to attempt to expound several ideas of the cons- 
tructive trend (using a specific example of the theorem -... 
on uniform continuity) from classical positions.  In par- 
ticular, . in this article there are refined, on the basis 
of the concepts'of the theory^of algorithms,. the concepts 
"functio discreta," "functio raixta," and "function con- 
tinua," which v/ere introduced as vfeyl as early -as in 1921. 
In the article is found a constructive analogue of the. 
concept of continuous function' from the point of.Baire. 
space J. Each continuous function F can be specified on 
Baire space by means, of a certain function <f   , which 
converts the corteges of natural numbers into corteges,: 
so that if . '■ 

*<»w*», .„,*» , 
is an increasing sequence * of segments of the point 

1. That is, each successive cortege is a continuation 
of the preceding one. 
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is an increasing sequence of segments of the points     = 

If f is a computable function, then the function 
P it generates is called constructively continuous (a 
constructively continuous function» considered on computa- 
ble points, is taken to be as the constructive analogue 

■ of fe continuous function).  In a. similar manner the con- .... 
'cept of constructive-continuous function is also intro- 
duced for the generalised Baire space (see Section 6 of 
the present survay). The points of the generalized Baire 
space can be visualised as functions that are defined on 
subsets of a natural series, and consequently, a function 
on a generalized Baire space can be visualised as an ope- 
rator on a system of such functions. From the earlier 
results of v". A. Uspenskiy /~~6j7 there follows the theo- 
rem, formulated by him in £" 13__/, that a function on a 
generalized Baire space (with values from the same space) 
is a computable 'operator when and only when it is cons- 
tructively continuous.  This, circumstance makes it pos- 
sible to obtain the Kuznctsov-Trakhtenbrot theorem on the 
region of general«definitenes3 of a computable operator. 
In turn, the constructive' analogues of principal topolo« 
gical concepts Introduced by A. V. Kuzhetsov / 2_J  and 
B. A. Trakhtenbrot / 5_/, i.e., concepts of the effec- 
tively open, effectively closed, etc., sets, is v/idely 
used in article /~13_7; a simpler example, than that given 
by Kleene, is constructed for a function which is cons- 
tructively continuous on a constructive compact, but is 
not uniformly continuous on it. 
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Chapter IV 

LOGICAL AM) LOGICAL-MA.THEMA.TIC CALCULI 

11.  Constructive Calculi from the Classical 
and Constructive Points of View. 

1. The constructive-logical and logical-arithmetic 
calculi have attracted the attention of Soviet mathemati- 
cians as early as in the Twenties of the current century. 
The well-known works of A. N. Kolmogorov £  8, 34/ and V. 
I. Glivenko £  4, 5_/, devoted to the clarification and the 
relations of classic and constructive logical and logic- 
arithmetic calculi.  (Under constructive we understand 
here those formalizations proposed by A. N. Kolmogorov, 
V. I. Glivenko and A. Heyting of "intuitionistic" arithme- 
tic and logic,  which makfes no use of the lav/ of excluded 
third as applied to finite sets of objects, i.e., which 
does not admit of abstraction of actual infinity.)  In 
reference £QJ A. N. Kolmogorov first proposed such an 
interpretation of the derivable formulas of classical 
arithmetic, under which they are transformed into deriv- 
able formulas of constructive arithmetic, i.e., into for- 
mulas, in the derivation of which one does not admit the 
application of excluded third»  In / 34_/ A. N. Kolmogorov 
gave, to the contrary, an interpretation of the Heyting 
logical calculus as a calculus of problems (and not propo- 
sitions) of ordinary ("classical") mathematics. 

T7 As was already noted (see introduction), Soviet mathe- 
maticians and logicians consider the use of the terms 
"intuitionistic logic51 or ''intuitionistic arithmetic" by 
persons who are far from philosophy of intuitionism as in- 
troducing confusion, and incorrect. The calculations of 
A. N. Kolmogorov and V. I. Glivenko were proposed indeed in 
order to separate the specific results, obtained in the 
school of ,! intuit ionists" founded by Brouwer, from his in- 
tuitionistic philosophy. Things are different, naturally, 
for the representatives of the Heyting intuitionism. 
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At the end of the Thirties P. S. Novikov (^ 17_7, 
published in 1942) proposed a proof of non-contradiction 
of classical (i.e., making free use of the laws of exclu- 
ded third) arithmetic, "based on a certain extention of 
constructive principles of "intuitionistic" mathematies 
to logical sums (products of a denumerable number of com- 
ponents (factors). In all these directions, work was con- 
tinued also in the period of interest to us now.  In the 
school of A, A. Markov particular attention was paid to 
the development of constructive logical and logical-mathe- 
matical calculi. 

2. In interpreting the Brouwer logic as calculus 
of problems, A. N. Kolmogorov £  34_/ did not dwell on the 
questions of what is a "problem," what does it mean wto 
solve an elementary problem,'1 what does it mean "to reduce 
a solution of problem A to a solution of problem b," in 
what meaning is the "reduction of problem A to problem B" 
can be considered in turn as a "problem"? Some of these 
questions concerning the relations between the provability 
in the Heyting calculus (which was directly interpreted by 
A. N. Kolmogorov) and solvability as applied to problems 
it was difficult to answer.  In the development of the 
ideas of A. N. kolmogorov, S, C. Kleene ' proposed a spe- 
cial method of "realization" of logical-arithmetic formu- 
las, which has, as shown by D. Nelson ' that property that 
any formula, provable in constructive arithmetic, is 
"realizable1'1 in the sense of Kleene. (The inverse-is found 
to be untrue even for the calculus of projections  ) A 
student of A. N. Kolmogorov, Yu. T. Medvedev, proposed in 

1. S. C. Kleene» On the interpretation of Intuitionistic 
Number Theory. Journal of Symbolic Logic, 10, No. 4 (1945) 
109 — 123, see also S. C. Kleene, Introduction to Meta- 
Mathematics, Moscow, Foreign Literature Press, 1957, 
Section 82. 
2. D. Nelson, Recursive Functions and Intuitionistic Num- 
ber Theory. Tr^n^actiongj American Mathematical Society. 
6191947) 307 -- 368. 
3. Concerning this result by Gene Rose, see at the end 
of item 4 and in item 9. 
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his dissertation ' (see also remarks [_  5,-6^/ a second 
refinement of the above-mentioned concepts and expressions 
as'applied especially to "mass problems" (in the sense of 
Medvedev) and their "algorithmic solution." 

Inasauch as the concepts of the mass problem in the 
sense of Medvedev we have already dwelled on.in Section 6, 
it is enough to mention here only that since a partially. . 
ordered' set Q,    of degrees of difficulty i?j, as shown by 
Yu. T. Medvedev, an implieative structure, 'any class 
&* . of mass problems a<4fi. , where e is a certain 

fixed degree of difficulty, is found to be an exact in- 
terpretation of constructive logic (Dissertation, theorem 
4).  with the aid of this interpretation it is possible to 
compare with each logical-arithmetic formula a certain 
mass problem the degree of difficulty of which characte- 
rizes the "degree of non-constructiveness" of the predic- 
tion stated by this formula.  If we give the naEie of '"ef- 
fectively true" to those logical-arithmetic propositions, 
to which correspond the solvable mass problems, we obtain 
a new definition of constructive truth in arithmetic as 
proposed by Yu. 'I. Medvedev in his dissertation. 

3. A student of A. A. Yanovskaya, B. Yu. Pil'chak, 
engaged in constructive calculi equivalent to the calculus 
of V. I. Glivenko,  In her dissertation^* and in/ 3_/» 
B. Yu. Pil'chak gave first of all a general characteristic 
of this class of calculi, as having seven properties which 
she listed, of which we shall note the following:  3) — 
4) the connection between the implication and tjie ■ der ina- 
bility. (theorem on the. deduction and modus ponens); 6.) the. 
provability of the disjunction A\/&  when and only when 
at least one of the formulas A or B is provable; 7) prova- 
bility of negation A(~~lA)      when and only when the premise 
of the provability of formula A leads to a contradiction; 

T.    Yu. I. Medvedev, Degrees of Difficulty of Mass Problems, 
Dissertation, Moscow State University, 1955. 
2. In other words, structure, dual to a structure with • 
relative pseudo-complements (See Birkhoff, Lattice Theory, 
Moscow, Foreign Literature Press, 1952, p. 273)'. 
3. B. Yu. Pil'chak, On the Calculus of the Problems of 
A. K. Koimogorov, Dissertation, Moscow, 1950. 
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2) probability of any..formula' 0 under the condition that"' 
any false formula is provable. The description given by 
B. Yu» Pil'chak is complete, -inasmuch as  any calculus' 
that lias the property 1}.- 7) is equivalent' to the calcu- 
lus of G-livenko, 

""As is well knovm (this is proved by Seeds! as early 
as in 1930) there exist a no finite" matrix («jet of values 

.; of truth values on which truth' functions corr#spending to 
'logical couplings are defined) in which the "identically "" 
true" (assuming only separated values for my'[distribu- 
tion of truth values with respect'to the variables that 
enter in them) formulas were' not only tKoae which are 
proved by the Hey ting calculus -of predictions* In 1936 
the Polish mathQiaatioian Jaskawski constructed e sequence 
of finite matrices £jyj suoh that the formula A is proved 
in the Heyting calculus if and- only if it is "identically 
true" in all I .  The proofs of his theorem, Juet like 
the proofs of the theorem 'on the canonical ("regular") 
representation of formulas .proposed by. him (with accuracy 
to deductive equality in the Heyting calculus),, was not * 
published by Jaakowski. In her dissertation (May 1950) 
B. Yu. Pil'chäk not only proved Jaskowski'sr propositions, 
but also found auch a proof (published in jT'^J)  which 
permitted her.to construct a auch simpler algorithm than 
that proposed earlier (by Gentzen and Wajsberg), one which 
solves the problem of- solvability.for the Heyting calculus« 

4. In 1954/55 Academic Year, P. S. 3<fovikov deli- 
vered at the Moscow university a course of lectures on 
constructive logic, which is presently being readied for 
print,  The basis of the course was the classic calculus 
of predictions (and later also predicates), broadened by 
adding to it the. provability operator, defined by certain 
axioms and a rule of deduction, The caloulue thus ob- 
tained was called by p. 3. lovikov B-calculue. Already 
in 1931 6-oedel stated a guess, which was later proved by 
many authors, that a calculus of this kind can serve as 
an exact classic interpretation of intuitionistic logic 
(for example, the Heyting calculus).  (»Exact»' in that 
sense, that any formula A is provable »intultionistically" 

1. B. Yu. Pil'ehak, On the Calculus of the problems of 
A. N. Kolmogorov, Dissertation, Moscow, 1950. 
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when and only when its "translation" A' into the language' 
of the D calculus is provable in the latter.)  In his 
course, P. S. Hovikov gave a new simple proof of an-ana- 
logous statement and constructed an arithmetic model of 
D calculus, corresponding essentially to the situation 
which arises during the measurements of quantities» which 
are nQver  realisable in practice with absolute (ideal) 
accuracy*- (The elementary predicates in this model have : 

the form«/(Xj Xa»--v^O<?^x*i3rV'"x*»)wbere f anJ g 
are linear arithmetic functions; OflMxx,Xlt -->-^7iy 
is true at the point (X f   tX£) ,. if there exists a 
vicinity of this point, in which f)J (x* ^x4/—Xij)*-

8 true.) 
Great attention was paid in the course to topolo» 

gical models of 1) calculus, and to the Hey ting calculus. 
To prove the topologlcal completeness of the Heyting.cal- 
culus one constructs a space of deductive chains, in 
which the topology is introduced by specifying elementary 
open sets Qy   » which are treated as an aggregate of de- 
ductive chains, containing the.formula %    . It is^proved 
that if y    enters in all the deductive chains, then it 
is provable in the Hey ting- calculus. Later on the 'space 
of all the deductive chains is replaced by a similar space, 
homeomorphic to Baire space.  On the basis of D calculus 
of predicates, there was constructed in the course an 
arithmetic (recursive functions were introduced together 
with the concept of the Goedel numbering, and the incom- 
pleteness theorem was proved). The course was completed 
with an examination of problems connected with the reali- 
zation in the sense of Kleene •• In particu&lr, a construc- 
tive proof was given for the theorem of Gene Rose * on the 
constructive incompleteness of the Heyting calculus of 
prediction (i.e., that not every "realizable" formula (in 
the sense of Kleene) in the calculus of prediction is 
provable in the calculus of Heyting),  and the existence 
was also proved of an arithmetic formula which expresses 
reali2ability. 

Tl    G, F. Rose. Prepositional Calculus and Realizability. 
Transactions, American Mathematical Society. 75 (1953), 
1 .- 19. see also S. 0. Kleene, Introduction to Meta- 
Mathematics, Moscow, Foreign Literature Press, 1957» 4-54, 
Translator's comment. 
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5, While in the school of P. 3. Hovikov the   -- 
constructive logics was studied from a broad (not refuting 
even classical, considerations:) point of view, in the 
school of A. A, Markov the attraction of actual infinity 
and the corresponding application of the lav? of excluded 
third v?ere not admitted even in the investigation of 
euch .constructive objects as the formulas or proofs for ' 
logical and logical-arithmetic-oaloixli» For illustration 
of this point of view we give an example pertaining to  !:~ 
the constructive interpretation, developed by Kleene and 
Kelson» of logical-arithmetic .formulas with the aid. of 
the so-called "realisation" or, in the terminology of A« 
A* Markov, "filling»»"1"  The definition of f inability 
is constructed in such av/ay that if formula P is fin- 
able, then the formula ■'.'IP      (negation of formula P) is 
not fillshle; to the contrary, if formula P ia not fin- 
able, then the formula"l$*'is fillable. The disjunctions 
of formulas A and B (i,e.s the formula "&Ayff]&    ) is fill- 
able if at least one of these formulas is finable it 
follows classically from this immediately that the for- 
mula (#y*"i>) '.(which expresses the law of" excluded third) • 
is fillable for 'any P, which does not contain three 
variables. From the constructive point of view, this, 
however, is not so, for speaking in this manner of any 
formula P means a consideration of all the infinite sets 
of formulas P as existing simultaneously, i.e., from the 
point of view of the abstraction of actual infinity, 
excluded from the constructive mathematics. To  state the 
existence of finability for each formula ■•(^V"1^) one 
can only if a constructive method (algorithm) is possiblet- 
comparing with each fornula B of the type [(PyiPjt       a 
certain filling of the formula fi (see N. A. Shanin 
LJ&-J'» P* 46) 5 since an algorithm of this kind is im- 
possible,, then within the, framework of the constructive 
trend in mathematics it is impossible to advance as a 
logical principle the thesis that each constant formula 
of the type I (PV'ti^    is fillable (H. A. Shanin / 13J7, 
p. 47) . 

1. This terminology Is apparently connected with the fact 
that the classical propositions are considered as incom- 
plete communications, which require filling with additional 
information, which imparts to them an effective characW 
ter. 
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6.: The principal objects of investigation in the- ■ 
school of' A* A* Markov during the period of interest to 
us were not the logical, but logical-mathematical calculi, 
the theory of which according to N. A, Shanin (£'V5mJt. 
p. 9) is an earlier chapter in modern mathematical logic, 
in the theory of logical calculi, since it is closer to 
mathematics,, i.e., it hears a less abstract character*  In 

., the present section we shall engage in special construe- .... 
' tive logical-arithmetic calculus •£, , obtained by adding' 
to the system of axioms of Peano recursive definitions of 
addition and multiplication and logical axioms and rule of 
deduction, .equivalent (in their aggregate) to the narrow 
calculus of predicates of Heyting- (the law of excluded 
third does not figure in this calculus). The addition'to 
the calculus 'Z    of all possible logical arithmetical for- 
mulas of the type of the law of excluded third fields a 
calculus, which is called by I» A» Shanin {£  13_/> P* 10) 
the basic, classic logical-arithmetic calculus and denoted 

2* .  In papers / 11, 12, 13^/ N. A, Shanin engaged in. 
the development of methods, proposed by A, 18*  Kolmogorov 
Z 8_/ and.by K. G-oedei (in 1931) of "submerging" the clas- 
sical arithmetic ( '%*    )  in the constructive one ( „».,'), 
i.e., a certain special (indirect) measure of constructive 
interpretation of the premises of classical arithmetic. 
V/e- shall dwell on these investigations in greater detail 
in the next item. Here we shall note that inasmuch as va- 
rious methods are possible of constructive interpretation 
of truth (or respectively falsity) of judgement, one can 
speak of different operations,''which juxtapose to the 
truth (respectively false) judgements constructively, (i.e., 
in a stronger sense).true (respectively false) ones.  One 
of such operations of constructive falsity was considered 
in 1943 by p. Nelson. * 

Ordinary negation of prediction of generality 
(~7(z)A(x))      in a calculus of type S- is. true, if the 

proposition that ix)A(z)    is true leads to a contradiction. 
The  "constructive" negation derived by Nelson (A. A. Markov 

■an*       •**<* *•"* *■ , ' 

L  40_/ calls it "strong" negation and denotes it :-"y:   ) 
differs in that the prediction   <*»(x)i4(*)-  is true if a 

1. D.  Nelson, Constructable Falsity, Journal of Symbolic 
logic, 14, No, 1 (1949), 16 — 26. 
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:contradicting example is given for the prediction ip)A(x)'"k 

In two papers at the Seminar of .the Leningrad 
Division of the.Mathematical_Xnsiitute (LOKI) on 6 and 8 
October 1949« A. A» Markov £ 40^/ expounded On a logical 
arithmetic calculus, constructed by him on the basis, of 
the concept of normal algorithm, and including along with 
ordinary logical operations also the operation of strong 

;negation, and proved various results obtained by him for 
'this operation,, In particular, it was found that the 
strong law of excluded third, i.e., the 'formula \AV'*»A:.    , 
can be refuted with an example (it. is possible to cons- 
truct auch a formula As for which   '•"l|A\/^4)   ■ takes 
place).  It was also,found that for1 strong negation in the 
general case the laws of contraposition are no longer true, 
and therefore the "principle of spatiality11 stops being 
true (the rule of 'replacement by an equivalent.).  Since, 
however, this rule retains its force for the replacement 
of ? by Q (or, conversely, .-of Q by P) in those cases when 
along with ;P*m$'     there takes place also i*^ P «»->» Q     ■» ' 
A. A« Markov introduces for' such P and Q. "the concept of 
complete equivalence;  'J>»K.$' *     It Is  found [m  40_/» that 
a complete equivalent takes"places   ' \"JPm(P'Z>"^P)        * 
expressing the usual negation in terms of a strong negation 
and implication. 

7.  The logical calculus of predictions iß* 9  which 
is obtained from the. Hey ting calculus by adding to it .the 
operation of strong negation. ;|**>*) , defined by the axioms; 

(«Jj»*^f}V rpwB'^'^pt'pm~'£'ip', "  .'".was'considered'by-a stu- 
dent of A'.. A. Markov, $♦"'&. "Vorob*yev / 4_/.  (When the 
prepositional variables in the proved formulas of" the 
calculus are replaced by arithmetic formulas, one obtains 
provable formulas of logical-arithmetic calculus of A. A. 
Markov with strong negation)., N. K'# Yorob'yev has shown 
that any formula, of the /tt*  calculus can be reduced to 
such a formula, at which only elementary predictions 
(letters) remain under the sings of strong negation (if 
such are generally not excluded. Furthermore^ the follow- 
ing theorem concerning' .normal form holds / 4__/: 

Each formula A of the .-'[[♦  calculus can be effec- 
tively represented in the form of a conjunction of formu- 
las Jt„ .'.., B  * such that in not a single ''ß   contains the 
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■ signs A     or ' ~\     , only a letter (propositional varia~1 
ble) can-be found under the sign of strong negation, not 
a single B." has a part of the form :(p' V.ijftOir.    » while 
the formula   A m&.* ... &Bfc    is itself provable 
in rr .     .  _ 

In reference / 5,„/* Yorqb'yev constructs an algo- 
rithm, which solves for the [fl*' calculus the problem of 

: solvability, i.e,, which permits for.each formula A, 
1 written in the language of this calculus, to solve effec- 
tively the question whether A'is' provable in  /fi*7  or 
not. With the aid of this algorithm it becomes clear, in 
particular, that the formula ' '^fCy^p.  . is not provable 
in If 4   ';»Since the. formula  ''MO'ljB' . is provable in 

Tf* , "then the narne of "strong negation" for the opera- 
tion  "^  is found to be fully justified. 

Strong negation belongs thus to the number of such 
operations  13* , for which the implication V*3~l#''* is 
constructively justified for any R*  It defines,, conse- 
quently t in the terminology .of U.. A. Shanin {£  13_/» pp. 
80 —- 81). a certain "particular type of concept of cons- 
tructive falsity"' (analogous, constructive justifiability, 
for example in the sense of finability, of any formula 
.'lÄHDÄ  denotes .that the operation  £  "defines a 

particular' type of concept of constructive truth.'")'. 
furthermore, inasmuch as for elementary formulas (i.e., 
the equalities T ~  8, where T  and S are terms in the 

■ £ calculus) the operation of strong negation can be 
eliminated (it is equivalent to simple negation), then 
it follows from the results of I. If. Forob'yev that a 
strong negation actually belongs among those operations 

"H   , with which it is possible to compare effectively 
to each formula-R of arithmetic an arithmetic (i.e., not 
containing'the sign of ,%   ) formula H*,•the provability 
of which in the %■   calculus can be considered as estab- 
lishment__of the constructive falsity of formula E. In 
papers ^ 11, 12, 13_J/» E". A; Shanin considers (in connec- 
tion with the problem of submersion of the classical cal- 
culus £ in the constructive calculus i3S* ) several ana- 
logous operations, defining particular type.of the concept 
of constructive, truth or constructive falsity. 

8.  Ehe first submersion operation, taken to be 
meant as an algorithm, applicable to any arithmetic   ...j 
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■formula B. and convertint It into another arithmetic for- ' 
mula R1 , and furthermore, in such ai vay that if R is prov- 
able in ;5i*, then R* is provable in ';& (and vice versa), was 
already considered in 1-925 by-A, EV Kolmogorov»  (Another 
operation of the same kind was published in 1931 "by K. 
Ooedel») She operation of. Eolmogorov consisted of "hang- 
ing" two- signs of negation on each, entry into formula R of 
.its sub-formula (including H itself)« -'This and several  ;„ 
other submersion-operations!, «Meh represent, a modifica- 
tion * of Kolmogorov's operation, but .much more simply 
realisable (requiring no ."hanging".of double negation on 
any sub-formula of formula R), was ■considered' in note 
£  12_/t and also in Chapter -II of.'£  13.„/'.by 13 * A. Shanin, 
But the submersion operations  If - of this type have, from 
the constructive point of view» that -effect,, that the very 
transition, from formula R to formula 'fM  is in the gene- 
ral case not found•constructively; .there exist such for- 
mulas H, ■ f or which the implication \MZ^M  is imfillable. 
(The existence of such formulas is due to the fact that, 
for example, the formula j V#""l*l(IX/Hl*)'  is derivable 
in the ; £ calculus (and, coitseouentlyY ""is ..tillable) for 
any formula ; V   with one free variable,x (therefore nega- 
tion of such a formula' is-unfillable); yet there exist 
such ".unsolvable" formulas • .l\   (of the same type), for 
which the formula  ilV* {f*®VTi4

s)' 
ie tillable.  If one 

taies K to be the last' formula, '%'s.en for any submersion ■ 
operation 'ft. , which converts It, into a formula of the 
type   :-|y*m{rVir) , the premise will be fillable in. 
the implication" ! K^Si?«J'» : but the .conclusion will not be 
tillable-,  This application/ consequently, will not be 
fillable),      .' "     '        • 

Introducing into consideration certain new opera- 
-felons» which define particular type of concepts of cons- 
tructive truth and constructive falsity, N. A. Shanin 
£  12, 13_/ constructed several submersion operations«, 
called by him "regular submersion operations,"• which do not 
have this, defect, • m 

9» P. 8. 'Novikov in his paper / 17 / proved that 
■*■'■   *■        M*W       «war    ■*■ 

1. The. operation    ;  according to N* A. Shanin (/~13„/,-'. 
p. 59), is a modification of the operation    , if no mat- 
ter what the formula E, the formula is deri- -■-' 
vable in the      calculus. 
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-L. ••■.... 
; if in. classical arithmetic one can prove a .formula of the4 

type %xB(x)    > where B{$)  expresses a solvable (recur- 
sive)'predicate, then it is possible to indicate effec- 
tively a number n, for which B(n)    takes place (so that the 
formula %%B(i)   is provable and constructive),  (This 
result permits in many cases to extract constructive, and 
furthermore elementary proofs from classical proofs). 
;Here use is made of a certain type of induction» which 
'consists essentially of a transition from all-the element's 
of recursive sequence to the sequence itself. A. S* 
Yesenin-Vol'pin £  4^/ reinforced this result somewhat, 
obtaining it by weaker means, namely by means of induction 
to the first • ^-number £0 ■   . -This result also pertains 
to the result ■of 1.  S. Ifovikov, as a proof of the non~- 
contradictability of the arithmetic belong to Hentaen to 
the proof of P. S8 lovikov (leaving aside the fact that 
the method of P. S. Kovikov» being stronger» makes it ' 
possible to justify the methods of transfinite induction, 
used by Hentzen (1936. 1938) and Schutte (1951) in proofs 
of non-contradiotability)..  l'his result c&n  be applied to 
a constructive proof of the theorem of Gene Rose on  the'' 
constructive incompleteness of the Heyting calculus of pre- 
diction, which was.done in 1954- simultaneously and inde- 
pendently of each other by P«, S. lovikov and A. S. Tese- 
ni».-Volrpin. * " 

12, Logical Oalculi and Their Models. 
Problems of Solvability, Completeness and' 

Uon-Contraotability. 

1.  The' subject of the theory of logical and logi- . 
cal mathematic calculi (which we shall call in this section 
for the sake of brevity "logical" or "deductive" calculi) 
are very closely related-with the theory of algorithms, 
both ordinary and conditional- (algorithms of reducibility 
or the computable operators corresponding to them). Also, 
the rules, of format!on'iof imaginable ("correct") formulas 

1. 8. C. 'Kleene, Introduction to Meta-Mathematics, Moscow, 
Foreign Literature Press, 1957 (p. 454, remark of trans- 
lator) . , 
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of these calculi, and the rules of deduction (conversions'; 
of certain formulas into others) usually have also an 
algorithmic character. Problems of solvability of such 
calculi are directly algorithmic problems. Problems, on 
the other hand of completeness are also in a definite 
relation, (in which we shall dwell in detail below) with 
certain mass problem? (problems of.. separability), i.e., 
also problems involving the search for an algorithm. 
Therefore the theory of algorithms finds a direct appli- " 
cation, in the theory of .logical and logical-mathematical 
calculi. However, conversely, logical calculi are used 
in algorithm theory*  Thus, we already mentioned that a 
computable function can be defined' in terms of a formal 
derivability of certain formulas of the narrow calculus 
of predicates. Another refinement of the concept of the 
algorithm (as an effective computing process) by means 
of the narrow calculus of predicates was proposed in 
19;4-9 by B, A. Trakhtenbrot /"i, 2_/J'\ This definition 
is based not on the derivability of certain formulas in 
the calculus of predicates,, but a dual one (in a defi- 
nite sense) of derivability — interpretability (the 
existence of a model for perfor.mab.ili.ty) of the formula 
of this calculus. 'It'is knovm that; along with processes 
of formal derivation» one can indicate also another ef- 
fective process, applicable to formula of" calculus of 
predicates.  Namely,, for each such formula YA     

and for 

each finite set q, it is possible to verify whether 
can be interpreted on the set q. or not, i.e., whether _ 

YA    has a model on the set q (B. A. Trakhtenbrot_/, 6J7, 
p. 63).  In the papers of B. A.. Trakhtenbrot / &^/ 
it is established that the process of simulation on fi- 
nite classes (seta) and the process of formal derivation 
are equivalent in that respect, so that they can serve to 
an equal degree as descriptions of the effective compu- 
ting processes«  Specifically, a definition is given for 
a function, simulated on finite classes, and it is proved 
that this concept is equivalent to the concept of 

1.  See also B. A. Trakhtenbrot, Problem of Solvability 
on Finite Classes and of the Definition of a Finite Set, 
Abstract of dissertation, Kiev, 1950. 
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— — i— — —  n 
;general-re cursive fmotion (B. A. Trakhtenbrot / 6_/). '   !' 
The paper '£$J  contains furthermore complete proof" 
(without leaning on the Robinson theorem used in the 
article by B. A. Trakhtenbrot /!_/)• 

2. The definition of an algorithm in terms of 
simulation of functions on finite classes was useful to 
B. A. Trakhtenbrot in connection with his solution of the 
principal problem to which his dissertation was devoted: _ 
the problem of solvability .on finite classes. The problem 
of solvability for a narrow calculus of predicates (the 
unso^vability of which was proved in 1936 by Church) can 
be formulated as a problem of finding an algorithm* which 
recognizes- from; the form of the formula,« whether it Is 
identically true in any object region (finite or infinite) 
or not. From the non-existence of an algorithm for auch a 
problem there still does not follow the non-existence of 
such an algorithm for the case when, the sought algorithm 
should recognise only whether the formula  ft is identi- 
cally true in any finite region. To  the contrary, it may 
even be found that in such a statement of the problem (we 
shall call it the problem of solvability on finite classes) 
the question perhaps is answered in the affirmative. 

For formulas- of a certain particular type, Acker- 
inarm solved the problem of solvability on finite classes. 
I. I. Zhegalkin 2~8 7 simplified the Ackermann method 
and strengthened its result, by proposing an algorithm 

T,     Iul^iHning the abstracts given here we note that^one 
says of a function f (for convenience of exposition,'this 
function is assumed to be single-placed one says that it 
(Z 6-7» P« 66> is simulated by a formula Mint, 7r,...). (where 
M~and N are single-placed predicates variables) if: a) in 
each finite' model of the formula iß    , in which the car- 
dinality of the volume of the predicate M  (placed in 
lieu of M) is equal to m, and the cardinality of the vo- 
lume of the predicate I  (placed in lieu of H) is f\m); ■ 
b) for each natural number m there exists such a finite 
model of the formula .ß    , in which the cardinality of the 
volume M is eoual to m. 'Thus, the function f(m) * m + 1 
is simulated by the formula ' 
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which solveB the problem of solvability on finite classes'- 
for formulas of too type ■       . 

( &Y$P(%, y) V §Ä -•- 3M if,• $v *a> -1 •. ♦*; **. %* —. *•),  • (7) 

where •■;/, #S5 %p ....,,#.s   are tv.o~-pl.ace predicate varia- 
bles« Since Aofcerman earlier reduced (even!) the general 
problem of solvability of the narrow calculus of predi- . 
cates'to a similar one far formulas of the type 

I 3»%$c*.i)v«ä... %%{#,■♦„#a»...»#^ t»%>%...«tj (8) 
:, (#\ #tl. #a,.,....»#,*  are the sane/here as in (7))» then to 

solve the problem of solvability on finite classes it 
remained, so to speak, to m&ke. one more step,, generali- 
zing .the 'result 'of I. I» Zhegalliru However, it was im-- 
possible to realize this step* Ae noted in dissertation 
of A. A Zykov,"* the proposition of unsolvaMlity of the 
problem of solvability on finite classes was advanced in 
1949 by P. S, lovikov« who remarked that" were the sought 
algorithm available■, it would permit also to solve prob- ' 
lerne analogous to the format problem (for example the 
followings construct an algorithm which recognises for 
any natural numb or n, whether -there exists (a non-vanish- 
ing )natural number-x» y,-K» such, that '* + £ **.*£  '.,„* 
A student of P* Si Hovlkov,, B. A. i'rakhiehbrot £  I,./'-* 
proved at the end of the-same year, 194-9, the correctness 
of this hypothesis of l\   3, lovikov/° i,e„» the lion- 

1. A* A..Zykov. On the Reduction of the Problem-of 
Solvability in logical Calculi» Dissertation, Moscow 
State University,-1950* 
2. See also B. A* Erafchtenhrot, Problem of Solvability 
on Finite Classes in the Definition, of a Finite Set* 
Abstract of dissertation» Kiev» 1950» _ _ • 
3. 'In his proof, B. A, 'irakhtenbrot £  iy used the pos- 
sibility of effectively constructing for each'general- 
recursive fornul&.f (of one argument) a simulating for- 
iaula ■ K^,/,...)  . 'ihe point is that the equation 
f(m) « 0 has an integer non-negative.root if and only if 
the formula  ■*(Af_«. #,_-«..)4VarFf^    has a finite model» 
i.e., when the negation of this formula is not identically 
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existence of an algorithm for the problem of solvability! 
on finite-classes (/ l_/s theorem 2).   

FrOK 'this result it was easy to obtain furthermore 
that the class ÄV of formulas, which are identically true 
in any finite region, does not have the property proved by 
VT. Wajsberg1* for classes Kn 

of formulas, which are iden- 
tically true in the region containing n elements. lamely, 
while both the joining to the axioms of the narrow calculus 
of predicates of any formula from K does make any formula 
of class K derivable» there exists^for any formula/.It' 
from Km    nsuch a ■'"©  in;'Km  that &[    is not derivable ■■ 
even after the .joining of formula '.% "',♦. We already dis- 
cussed the expansion of this, and other results to a broad 
class of"axiomatic theories of sets, and also to the rela- 
ted results of the question of the equivalence of two defi- 
nitions of a finite set» in Section 1»   We shall have 
occasion to stop later on on certain aspects pertaining 
to the__proof obtained in this manner by B. A. Irakhten- 
brot / 2, llJ7 of "^e deductive- incompleteness of forma- 
lized systems of the theory of sets. 

Footnote (3) (cont.) from pg. 135»  ...true in any finite 
region* By constructing an algorithm for the problem of 
solvability on finite classes, we would thus obtain -the pos- 
sibility of extracting from it an.algorithm, which recog- 
nizes whether an equation of the form f(m) = 0 (where f is 
arbitrary (single-place) general-recursive formula) has an 
integer non-negative root or'not. But the impossibility of 
such an algorithm was- proved by Church as early as in 1936. 
1. W. Wajsberg, Hath....Ann, 109 (133). .   . 
2. V/e note here still another proof, obtained by B. A. 
Trakhtenbrot (sec Dissertation) in passing (independently 
of other authors), for the proposition made by Hilbert and 
Bernays (D. Hilbert and P.-Bemays, Grundlagen der Mathe- 
matik, Yol.l, p. 124) concerning the deductive indepen- 
dence in calculus of predicates of the following two for- 
mulas, which are identically true in any finite region: 

. •* (ExHEy)(Eu.\(ßt>)(F(*, u)&F(y, t^ft F(t>, *)* P(P. y)) 
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3. The problem, of solvability on. finite classes J 

was engaged also by another student of-P. S. lovikov, 
A. A. Zykov» 

In connection with the fact that the algorithm for 
the problem of solvability of the narrow calculus of 
predicates is impossible, particular significance attaches 
to the effective .reduction of the problem of .fulfinabi- 
lity of the formula: A of the general type to the problem .',. 
of fulfillability of another formula B of a special type. 
Leaning on the results of Goedel, Loeweuheian, and Acker- 
mann, the Hungarian mathematician Kalmar and his student 
Suranyi gave methods for reducing (in.this sense) the for- 
mulas of. the narrow calculus to, any of the following 
forms: 

■  (Xj) (atf (xjf gpk : .. %R«C (F;- zv, ^ x8, ft, ..., yK)f iß) 

(».){%}(it)%»W ... («,)1|(#; a{» ..., 2„( p),       (10) i 

'■ (*i) ... (*J £j# (F; *i, .. *,.*„» #)* t (t J) 

where F is a tw0-r3pa.ce predicate variable. 
By virtue of the result of E.» A»- Trakhtenbrot, 

there exists no algorithm also for the problem of solva- 
bility on finite classes, and therefore the problems of 
reduction of the formula in the same sense as for the ful- 
finability in a finite region, has the same significance, 
as in the case of the fulf inability In general. As shown 
by A« A* Zykov, the reduction'to the form (9), (10)» and 
(11) is possible in. this case, too. Suitable changes in ; 
the arguments of Soedel, loevrehheim, Ackermann, Kalmar and 
Suranyi allow us to obtain theorems for the reduction in 
the following general formulation: for any formula A of 
the narrow calculus (with the identity predicate) it is 
possible to construct effectively a formula B of any of 
the forma (9), (10), or (11) such that both formulas si- 
multaneously 'are either not fuifillable, or else are ful- 
fillable only in an infinite region, or are fuifillable in 
finite regions, with the cardinality of the smallest of 
the fuifillable regions for formula V  being expressed by 
a primitive-recursive function of analogous cardinality 
and constructive parameters of the formula A. 

By virtue of the loewenheim theorem, any function.....1 
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of the narrow calculus of predicates, (with, identity) . is "1 
either performable in any infinite region» or else'-is 
not fulfilled in any infinite region.  Therefore it.is 
possible without risk of falling into set-theoretical an- 
tinomies, to define a spectrum"1"* of -such a formula as an 
aggregate of all cardinalities .Of»; of these regions, 
on which the formula is fulfilled. In the broadened cal- 
culus of predicates (of second degree) there is no ana- 
logue of the.Loewenheim theory, and a naive definition 
of the spectrum of the formula cannot be acceptable* At 
the same time for a concrete quantitative (iee,, one not 
containing free variables) formula and a concrete cardi- 
nal number '■■*  ■ it ia.'meaningful to question whether a 
given formula'is fulfilled • in a region of cardinality  , 
meaning," the question of a correct definition of a spec- 
trum of a formula of broadened calculus is not removed» 
Hot having as yet euch a definition, one can nevertheless 
carry out transformations of formulas which do not change 
their "spectra" orjwhioh change them in an observable-man- 
ner, A. A. Zykov I' 2j      proved that for any quantitative 
formula A. it is impossible to construct effectively'such 
a formula B, that if A. is true in the region of cardina- 
lity * » then B is true in the region of cardinality 

' '*4^ + 8**<f  is the number of Places "of the most mul- 
tiple-spaced predicate in A), and vice versa, if B is 
true in" the' region of cardinality ' *.   9  thehfhas the form , 

*V*I+,3>I- *  wiiere i"* ia «mother cardinal number» 
less than ,;'» , and. A is. true in the region, of cardinality 

> ; with■this, B "has the form 

1. Earlier, in note' /"lj, B. A. Trakhtenbrot defined the 
related concept of a spectrum (single-place) of a predi- 
cate M,. entering in formula   «(«#>...>'■•  as a subset 0 
of a natural series such that mc£. when and only when 
there exists a finite model of the formula «  , In which 
the cardinality of the volume of the predicate M+ (see 
footnote at the end of item 1) is equal to m. 
2. See Also A, A. Zykov, On the Reduction of the Problem 
of Solvability in Logical Calculi, Dissertation, Moscow 
State university, 19!>0. 
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.. ; *V<lgKf0>K»P'. $ b% (12} 
where \W.    is a tvro-plaee anal$(s

: one-place predicate*' 
while !.<f$t> 'is a sequence :of quant ore in the object 
variables of the aggregate ifel * It follows from this 
that when search!jag for a sensible- definition of the ' 

l spectrum, it is enough, to' consider only formulas of type _ 
'(12). 3?rom the same theorem one obtains a new proof of 
the result of Ackermann concerning the unspliability of 
the problem of exclusion, namely: If one takes for A to 
be BXiy  formula, of the form ' ■.. 

'. e'pt .,^£j\<i*)>«CJV .-» ^;(*Ä 
(I.e., in a certain sense a. formula of narrow calculus, 
fnlfillable only in an infinite region» and one cons--' 
tracts"from it a formula B of the. form (12), then it is 
impossible to exclude Q. from the latter (or in the oppo- 
site we would have obtained the formula of narrow calcu- 
lus, which is fulfillable only in a non-denumerable re- 
gion» which is impossible). 

So reduce the formulas in the sense of equivalence 
(which also -does? not change the "spectrum" in. the case 
when tha formula is quantitative) A. A. Ziykov obtained, the 
following results;, a) any formula can be reduced to a be- 
forehand specified form in BUOIJ a way that' the quant or s 
in the predicates .proceed the quantors in the objects: 
b) the quantor prefix'of the form 

can be reduced to the, form 

.    ;   ,., {PjSqiSCj ...  <{*}> 

with the same number of successive variables of the type 
as in the quantorB in the predicates. „ _■ 

4.  In treating the work of A» A. Muchnik £ tj  in 
Section 8, item S, wo already spoke of his results» which 
establish the connection between the problems of non-sol- 
vability and non-separability. Certain.problems of the 
same kind were considered earlier (1953) in. the paper by 
B. A* •Irahhtenbrot LrlJ,    lamely* B. A. I'rakhtenbrot 
.showed that the unsolvability of both problems of solva-..; 
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;bility of narrow calculus, "both, the general problem and ..' 
that on finite classes, follows directly from the cir- 
cumstance that the set of all. identically true • formulas 
of narrow calculus of predicates is not separable recur- 
sively from the set of ail formulas which are refuted in . . 
the finite one. His note / 2 / is indeed devoted to a 
proof of this non-separability.  That problems of deduc- 

i tive incompleteness of a broad, class1 of axiomatic theories, 
of set are related with recursive non-separability of cer- 
tain sets was -observed by B. A, i'ra.khtenbrot already in . 
the winter of 1949/50. leaning on the existence of a pair 
of non-interseoting enumerable sets., not separable recur- 
sively, B» A«. Irakfat en.br ot in his dissertation (Kiev, 
1950) proved,"and furthermore assuming only the formal 
non-contradiction of the axiomatic theory of sets (of 
type V considered by him), the existence in it of for- 
mally unsolvable premises» which state the equivalence of 
certain conditions .of finiteness of a set.  (In the paper 
/ 11_/, which was published, later, and which contains*.the 
exposition of these results of the dissertation, B..A. 
Trakhtenbrot changed the example he first used of a pair 
of■recursively non-separable sets with an example- from 
reference / 2_J7, which was discussed above).  The incom- 
pleteness of set theory (in the sense of the existence in 
it of unsolvable, i.e., premises "not provable and not 
refutable by its means, was thus proved to be the conse- 
quence of the recursive non-separability of certain sets. 

Devoted to the general problem of the connection 
between incompleteness (and ihcompleteability) of .forma- 
lized theory ("logical calculus") with the■effective non- 
separability of certain.sets was the work of V. A. 
Uspenekiy / 5„_/.      .  '       ■_»-.' 

5. The work of V. A. TTspenskiy / 5_/ was in answer to 
the question advanced by A. N. Kolmogorov concerning the 
general causes of the incompleteness of formalised theo- 
ries which contain arithmetic.  (rfhis incompleteness 
(which can be treated both in the sense of the existence 
— and, furthermore, effective in a definite sense — of 
premises in the calculus under consideration which are not 
solved by its means, as well as in the sense of the exist- 
ence in it of a formula that is interpretable as content- 

■.fully-true prediction concerning natural numbers and at ■-..: 
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the same time not provable in this calculus), was proved,' 
as is known "by. K« Goeeel (1931) in.,his' famous theorem, 
generalised later by Bossen, (1936)*"•)    -As noted by V* .A. 
TJspenskiy, the final .formulation of the general defini- 
tion of deductive o.alculus belongs to Ac flu Kolmogorov. 
The  class of calculi (formal!sec! theories) which fall 
under this definition is quite broad»; The only limita- 
tion iiaposed on their rule of derivation, lies in that 
these rules must bsar an. algorithmic character (must be 
algorithms, which convert certain-formulas ■"(group's of for-- 
mulas) " into others). Also considered in. the work are 
those calculi j. the alphabet of which contains a definite 
symbol (for examole/ '°1 .), called the symbol of nega- 
tion,  In the ■ i! calculus there is separated a class 

:|j§ of formulas» closed with respect to operations of 
hanging., the sign, of negation, and.  such that there exists 
an algorlthms which recognises whether any formula of the 
1 H calculus belongs to fj§ -or not»-"* All the concepts 
introduced later on (non-contradiction, ■completeness,' 
.strengthening of the calculus, its non-ooiopletahility» 
etc.) are considered as applied to a certain fixed set 

'. f§\ *  With the aid of the Goedel numhering, to each 
formula of ;H ■ calculus- there corresponds a number <— 
the number of the formula. -Principal- attention is -paid in 
this worh to a class of calculi1, in which for any formula 
'4lit there follows from' the derivability of A the deri- 

vability of ;1"1 4     and'- from' the derivability . "1 "1..1 4 • 
there follows the ''derivability^of '""§4'  *  Such calculi are 
called by V» A«, TJspenskiy /J\/ regular,' (The  construe- - 
tive calculi} considered in Section 11, belong to the 
class of regular ones)',.     .    «.a», 

'fhe class of formulas' from 9    » which are deri- 
vable in the Ü  calculus, we denote '■ i|l| ; the class of 
formulas (from'the same ;ff| )» the negation of which are 
derivable in ,fi (i.e», contained in 'ft ), we denote by 
Sill} * ''!&  set in correspondence to these classes the 

1. For bibliography, * see» for example, the book by S* 0,- 
Kleene (Meta~Mathera.atics). 
2. In the usual interpretation it-is advisable to use 
for M     &  certain set of "imaginable" formulas« 
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—    . -1. 
;classes ."ICfMi and 'X(H)  of the numbers of .formulas,   J 
which" entef, (respectively) in; &$£ and; ffl| . * The 
i||. calculus is called-non-contradictory if 

":MB).fl9(B]!"»A » ii;: iS Galled complete if 
-tMU *'<")•* • *he calou^s ■ lly ^^^J^L 

strengthening of the calculus 111 , i± i.™.^ I ?..*W 
A calculus is called ineorsiple table if it does not admit 
:of a complete and non-contradictory strengthening. 
' T It is found that the non-separability of sets 
i'(U) and &ftt) ■ is a necessary and sufficient condition 
for the non-coijipletability of the regular calculus <t| . " 
(As applied to non-regular calculi, the non-separability 
of the'sets &(&)- and :J*(fQ' -stops being, to be sure, a. 
necessary condition of the" non-completability of the eal- 
culua -rn  » however, it remains in sufficient condition 
of the non-completability of an arbitrary calculus 
(?. A.rllspenskly1,wf'5_7, theorems 2, ■.$).)■ ■/■!. >■,-, 

'Moreover," by introducing the concept of effective 
non-separability and effective non-completability, analo- 
gous to what is done in the definition of a creative set, 
V. A. Uspenskiy proved'that -these theorems remain true al- 
so when the words "non-completability,s and "non-separabi- 
lity" are replaced in them by the words "effective non- 
com-Dletability" and "effective non-separability."  (By 
»effective non-separability" of two sets B]L and Sg one has 
in mind the systens of such a partially-recursive"func- 
tion y'f-M ■>]{)   t  which is defined for the numbers n and 
nn of any enumerable sets IL and H , which separate K and 
E2, and attributes to "them a natural number Y (hif-n7J   , 
wiich belongs to neither EL of to H .  If E^ and H are 
sets of numbers of formulas of which the first is derivable 

Tl    "On^the^r'vle  of the derivation of P calculus one im- 
poses here an additional requirement .(refined' somewhat fur- 
ther by A. A. Markov), that to each of'these .there corres- 
pond a'partially-recursive function, which converts the 
number of the formula, to which the given rule of deriva- 
tion is applicable,' .to the number of the formula obtained 
from this rule. Under this condition the sets JT{fl): and 
I (ft)   are both enumerable. . 

2. The indication of the sufficiency of this condition 
belongs to A. lf:vKolmogor6v.        ' ' ;: *        ■-• 
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and the second «— refutable in any strengthening  P  of 
the  P  calculus, then'it is clear that Y (ii$.i"h-&')   i-s 

the number of the formula which is not • solvable in p'  , 
indicate«! effectively in this 'manner* The  example» be- 
longing to P. S» Sovikov and. 33, A. Trakhtenbrot, of re- 
cursively non-separable non-intersecting denutaerable sets 
are at the .same time examples of effectively non-separable 
sets*} 

If a non-contradictory regular P    calculus is such 
that it has enough means to express and prove (content- 
fully) the statement that the number m belongs to the set 
E. , where B,, is one of two effectively .non-separable- denu- 
merable sets E and E*0j then it is easy to obtain from 
Uspenskiy's theorems that the P calculus is effectively 
non-completablej  * i.e., that for any of each reinforce- 
ments one can indicate algorithmically a formula which Is 
not solvable in this reinforcement.. Since the deductive 
calculij which describes arithmetic, are usually reinforce- 
ments of such a p calculus, this means that for these 
Goedel's theorem should hold.  Other properties of forma- 
lised systems,, containing an arithmetic, were used by 
Goedel in .proving his theorems (for example» the possibi- 
lity of expressing the syntax of a system by means of 
the system, itself) are f ound. to be thus'not essential 
conditions for its correctness«  'The essence of the mat- 
ter lies indeed'in the..effective non-separability of sets 
of numbers of proved and refuted formulas of the system 
(or even of its part 93 )•  U'he effective non-separa- 
bility of these sets is found to be a sufficient condition 
of effective non-coapletability of an arbitrary calculus 
including also an irregular one (?. A. Uspenskly £  5_7, 
theorem 8)«) 

Prom among the other theorems and concepts, consi- 
dered in the article 'by  V. A, Uspenskiy / 5.y» we note 
only the one pertaining to the connection between solva- 

1. V. A. Uspenskiy £  5_/, item 5) gives a method of ef- 
fective construction under very  natural conditions, from, a 
pair of effectively non~separa'ble sets E and Ea, of such 
a calculus ]p0  » which is effectively non-oompietable and 
the reinforcements of which are all the general deductive 
calculi that describe arithmetic. 
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~h 
bility and essential non-solvability of a calculus with h 
its non~eompletabill"ty*  (According to 1'areki.» a calcu- 
lus is essentially not solvable if it is non-contradic- 
tory and does not admit of a non-contradictory solvable 
reinforcement.- As in other, concepts introduced by him, 
V. A. Uspenskiy relativizes the concepts of solvability . 
and -essential non-solvability, assigning there to ^ •) 
Indeed, it- is found {£  5„,7» theorem 3) that a regular 
calculus is essentially not solvable when and only when 
it is non-contradictory and not pömpletable. If the 
calculus is Irregular, then this is generally speaking 
not true: there exist •(noil-contradictory) non-corapletable 
and at the- same- time solvable (as -applied to the corres-.. . 
ponding Q . } calculi (V. A, IFspenekiy,/ 5jt  theorem 7; 
the latter contains also a description of a certain class 
of such calculi)* 

As already noted above (Section 8, item 2), A, A. i 

Muehnik ii'ä%m ■aS^äÄifte^ : 

the five questions raised by. ¥",, A« Uspenskiy £  5„/: ■"■ '■ 
I. .Do there exist non-separable sets which are 

not effectively non-separable? 
II. Do there exist completable calculi,  which are 

not effectively non-eompletable? 
^o* 'Developing further the ideas of.?«. A. Uspen- 

ekiy / bj and of J» My hill,- A. A*- Muehnik'"* obtained se- 
veral theorems on the properties of pairs of effectively 
non-separable sets and more  generally auch finite systems 
of enumerable seta,"* which he called effectively multi- 
ply non-separable. In  particular,, it was found that for 
any pair of non-intersecting denumerable sets 35_ , E 
there exists a geaeral-recurßive function w ' , "mutually 
uniquely mapping the natural series.In itself, such that 
the sets of'images v]/(f,) and «J/ff^V are ■effectively non- 
separable. 

The circumstance that (theorem 2) all .pairs of 

1. A* A. Muehnik»; Isomorphism of Systems'of Denumerable 
Sets with Effective Properties.  Transactions. Moacow Ma- 
thematical Society 7 (1958), 4-07 — 412 (reported on 
17 December 1957). 
2. Thia::;p;aper1,refersv;.pnly to 

:a^.t.s:.^:|:,lin|twral ^nimbers»'-:.; : 
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_i- 1        ~~. 
of effectively non-separable sets are isomorpMo * to   ;' 
each other, was used to obtain further that 'effectively- 
non-completable' -calculi are twice isomorph!c "between"each, 
other. "(The deductive calculi 1^ and Lg are called 
twice isomorphic if there exists 'an algorithm which 
placed In a mutually-unique-correspondence all formulas 
of one system to all formulas of another system, and de- 
rivable formulas' in 11, correspond to derivable formulae ...... 
in 1,( while refutable formulas in R correspond to re- 
futable formulas in 1„«)      2 ' 

(The remark of P. Bernays * concerning the formal 
systems of Myhill, which are  "non-reducible to each _ 
other," pertain naturally also to twlce-isomorphic cal- 
culi: any quite elementary system of arithmetic (without 
the axiom of complete induction) can prove to be twice 
isomorphic to a strong system of axiomatic theory of 
sets or'tkeory of types with the assumption, naturallyr 
of their non-contradiction.) 

■7. In connection with the Goedel theorem (on the 
incompleteness of formalized systems that describe arith- 
metic) the question arises naturally of whether it is 
possible to make the system become complete by adding to 
the formal system of certain non-finite, but at the same 
time sufficiently naturally and visuaiiaable rules of 
deduction. She simplest of this type of rules is the 
rule of infinite induction, of which we spoke in section 
S (item 6). V/e dwelled there on the results of A. V. 
Kusnetsov £"sj  who proved that a (formalised) arithmetic 
with the rule"of constructively infinite induction is 
already complete'. More complicated formalized systems ^ 
(which describe the classical mathematical analysis) with 
the ordinary rale of infinite induction ("the Oarnap 
rule») but which admits the application of this rule not 
more than a trsnsfinite ordinal number ■ £ times, was 

X « 

ca 
Systems of sets f£, ,£*,-- > £ l} and pi,/a, -jfij   are 

..lied isomorphic if there exists a general recursive 
function Us     ,  mutually-uniquely mapping .the natural 
series on 'itself, so that x£ £h ^ 4^ (X>6 P* (k - »,2, ..-« LJ- 

2. P. Bernaya, icmrns^c^äj^ol^JjM^■221  (1957) t 
73 — 76. ., 
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; engaged by a student'- of. P. 3.' Hovikov ~ B. la. Paler-   I. 
vich.  • Thevfirst chapter-of the dissertation by. B. Ya. 
Balevich is devoted to an answer to the question of B. 
Rosser, raised as early as in 1937. Bosser succeeded in 
showing that .if one adds to a logical-mathematical sya- 
tme, which contains a set theory with simple theory of 
types and system of Peano-axioms for the arithmetic of 

.natural numbers, a deduction-rule which permits the use :- 
' of the "Caraap rule" & times, where a is a trans- 
finite ordinal number less- that W1  , then both Goedel 
theorems (both regarding the incompleteness of the cal- 
culus as well as the non-provability of the non-contra- 
diction of' the calculus by its own means) retain their 
force. Why, however, must &    be less than c*>z  ? Gould 
it be that for larger 3  the G-oedel theorems lose 
their force? In his dissertation, B. Ya. Balevieh showed 
(to be sure, in application to certain different systems, 
which'fc&ed&Abfe '«-feba* al&Bf&oal'^Wßßm$&9& 'analysis), that 
vJ2  enters here not all because under very broad condi- 

tions (which are satisfied- by broad classes of construc- 
tive transfinite &    ) for systems admitting the applica- 
tion of the Oarnap rule •£ times, both Goedel theorems 
remain in force. 

Another question which engaged the attention of B. 
Ya. ?alevich in his dissertation pertains to the question 
of the relation between classical, and constructive forma- 
lized 'By stems of mathematical analysis.  Namely, to.the 
question whether there exists such a calculus (construc- 
tive in a definite sense), which formalises the mathema- 
tical analysis, the non-contradiction of which would be 
proved' and' which one could "submerge" (exactly as the 
classical arithmetic of rational number is submerged in 
the constructive arithmetic of the same numbers) the clas- 
sical mathematical analysis, proving thereby its non- 
contradiction.  Naturallyi B. Ya. Falevieb did not succeed 
in finding an answer to this question, the difficulty of 
which is evident from the entire history of.modern mathe- 
matical logic. He .'did show, however, that even in one of 

Yl    B. Ya. Palevich, Incompleteness Theorems,in Systems 
with the Oarnap Rule and Their Applications. Bisserta- 
.tlohj^HOSCOW, ;j|.956. ... ;•-.-     :.K  : n:.-, ■..-.■ .;,;.; ,' ... ■ •    . 
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the strongest of the heretofore-developed systems of    : 

constructive■mathematical analysis (that of ¥. Aokerm&nn, 
the proof of non-contradiction, of which has been fully 
demonstrated by the author) there exists^ no "correct" 
model for the system Sf of classical analysis (without 
Oarnap'e rule), considered by B. la. Falevich ("correct," 
i.e** satisfying definite requirements, which, incidental-■ 

:ly, are QUito natural). And a. constructive analysis, in   
'the sense of Ackermann, is thus incapable of duplicating 
the contents of classical mathematical analysis* 

8, She second öoedel theorem namely concerning 
the probability of non-oontracliction of calculus by means 
of this calculue, itself,' engaged the attention of not only 
B. la». Palevich, but also of A. §• Yesenin-Yol*pin* His 
results, reported at_the ffhird All-Union Mathematical 
Congress (see also £  4_J/) consist of the following. 

I) An example is constructed of a formula that ■ 
expresses the non-contradiction of a,  system which at the 
same time is no lese provable .in this.system,  rhis simple 
example .-shows, that formulations of the second G-oe&el theo- 
rem the. concept of "numerical expressibility" of the pre- 
dicate,  which is sufficient for Gcedel's first theorem, 
is insufficient for the formulation of the second theorem. 

II) It was established that it is impossible, to 
prove in the  w-non-contradictory calculus, satisfying 
conditions I of Go8del1e theorem, a formula that states 
that "if this calculus-is non-contradictory» then it is 
also i*j-non-contradictory/1 and constructive in the way 
required in GJoedei's second: theorem. 

9. The principal problem connected with "logical 
calculi" formalized theories) pertains to their relation- 
ship to contentful models, or, in other words, interpreta- 
tions. Essentially, a formal system is necessary precisely 
in order to help clarify (and refine) the contents of the 
theory formalised with its aid* The most important value 
of theorems on incompleteness and 021 incompleta'bility is 
due to the fact that they clarify the limits of the capa- 
bilities of such a formalination.  On the other hand, it 
roust be noted that for a broad class of incomplete (and 

1, 3. C. Ileene, Introduction into Meta-Matkematics, Mos- 
cow, Foreign Literature Press, 19;+7, Section 4-1. 
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incompletable) regular calculi» considered by V. A. Uspeii- 
skiy £"5^J  it is possible to indicate algorithmicaily in 
them an unsolyable formula <|>  such that <~1 # is con- 
tentfully true» but not derivable, übe incompleteness of 
the calculus therefore does by no means denote the impos- 
sibility of establishing a contentful truth, (or falsity) 
of a formula which is not solvable in this calculus.' 

Tue  circle of problems connected with the relation..., 
between formal theories and their- contentful model per- 
tains to the field of semantics»' the scope of which is 
getting more and more segregated into a special part of 
mathematical .(and general) logic» 'fhe theory of models' 
is being developed, however, also in the form of a cer- 
tain mathematical theory» closely related with modern 
algebra. "Engaging in our country with euch a theory was 
A. I. Mal'tsev, on whose work we' shall now dwell briefly. 
We shall note as a preliminary only that these works have 
the character of classical mathematical researches, no•■ 
'longer ico^fccteä *#i%3!£^ ■• 

The ordered system ■ J^»»0«.Jk, Jb,.... .$s»»-4  ? where- 
A is a non-empty set, and \.9k' ■ is a ä-place predicate on 
A, is called by A» A. Kal^tsev a model.  The type of 'the 
model '$&'  is called a row of .natural numbers! f«*»«i»«.,.*,.{^.i*X. 
corresponding to the- number of argument places in the' pre- 
dicates yS^.   of the model'H . From now on we shall under- 
stand by class of models the class-of single-type models» 
which contain together with, any of their term all the iso- 
raorphio ones-. Y/e fix'a certain type j%* %*_.«.*%*r)'; and 
consider the class Q of_all models of this type. We cons- 
truct a formal system corresponding to this class. ' For 
this v/e' take'a sequence of object symbols ftyfo ^."<^^»%'. 
a.  sequence of symbols for the ..yariables i,i»»;% ^:'^:;and a 
sequence of predicate symbols|#V P%, #V—*.'^ ..»^where |'J| 
is a symbol of the • ®%  -place predicate. We call an axiom 
a closed formula of the narrow calculus of predicates, 
compiled of these symbols.- Por an arbitrary fixed axiom 
and an arbitrary fixed model from Q, the following ques- 
tion i3 raised in a natural manner: ' Is 'this axiom ful- 
filled in this 210 del or. not? One can specify a certain* set 
of axiom's, having certain properties and ask; how is it 
possible to'characterize the class of all these and only 
these models (from Q), in which all these formulas are .-.: 

.'. "'""" '"'' ' ' ^:"'•■•;-'-•-•'; "•• : •- 



satisfied? Ike question can also be stated inversely.  ' 
Separate in class Q of all models of a given type a cer- 
tain subclass of models»'having certain special algebraic 
properties end ask: do we axioraatiae this subclass or —- 
a narrower question — do. we äxiomatiae this aulDola.es with 
the aid of axioms of a ■certain concrete. type? Por examples, 
a sniff iorent condition of the representability of a cer- 
tain model of a certain class K by e,~ model., in the form of;~ 
a sub-straight product of K «—• non-expandable K models 
'.-reis found by A. I. Mai*tsov in / 4-5J7 in the following 
form: the class K should be axiomatiaable with the aid of 
axioms of two typess 

where? $* is any of the guantore» änd j$U%» %,..,»**)'. is a 
formula made up of expressions of the form jJM*V «V •«•» *^j). 
only ' with. the aid of the operations ;.&_V; 

where i^C^i* •*.._*> 5**) is a formula, compiled of the expres- 
sions of 'typaZ-TA't**«**»*'"»**^)   with the aid of the ope- 
rations LA* y .**♦ w 

In /"%6 7 A. I. Kal'tssev proved the following theo- 
reins in order that a finite' axiomatizable class of models 
be closed relative to talcing of komomorphisra, it is aeces- 
sary and sufficient that it be axiomatiaable with the', aid 
of axioms of the type (1.3)« 

in / 52_/ A. I» Mal*taev Introduced the concept of 
pseudo-axiomatizability such that any axiomatiaed class is 
found to be pseudo-axioiaatizable, but not vice versa.  In 
the sama reference /*52_/ A. I. Mal'tsev found a sufficient 
condition for having a pseudo~axi03iati»ed class become 
äxiomatlaable/ It was found that when this sufficient con- 
dition is satisfied, a pseudo-axiomatiaabie class is axio- 
matisable only with the aid. of axioms which are written in 
the Skoiem normal form. 

An ordered system L*!^4,_/t»««'»Ai.«*«>i  where A ia a 
non-empty sot and 7c  is a ?'»» »place operation, is called 
an algebra» For any. .JI^-. place operation j/s„ it is possible 
to define in a natural manner \ (Hf fjhplace predicate'%■. 
by putting :J?<(«t* %» ...t«y *)«■ StAC*ht»"--•."««u> — *•). ^e algebra 
becomes a model. 'The inverse operation is not always . ■-■' 
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i possible. From the'model It is obviously possible to   ! 

make an algebra if and only if for any basic predicate 
;Ht the axiom of existence and single-valuedness is- 
satisfied  ■ * . 

• - - -■   •-' (15)... 
":For classes, of algebras the question's also arise of axio- 
mati_sability with the aid of axioms of one form or another. 
In l_  44_/ A. I. Mal'tsev found two algebraic criteria of 
axiomatinability with the aid of conditional identities, 
i.e., formulas of the type: 

; ¥*j. ... Vxjifi«ts * *■ • *t»'**♦*~*$«*i •" 4wsi> j /16 j 
where  .'***.♦*•••• »_*fWi» ?«♦»< are polynomials in the varia- 
bles ,*s»«•'»"*«»*  Any non-closed formula of the narrow cal- 
culus of predicates constructed; in,_a fors» ,?£,^ys^em co:f~ . 
rU&p'bnding to ä"r%'§:rwin'ola^'tj^^^^ consi- '*'" 
dered as a derivative predicate on any of the algebras 
of this class» But by far not any sucto formula will re- 
present an operation in the sense of axiom (15).  In 
L  51_y A» I'. Kal'tsev established a general form of ope- 
rations, obtainable with the aid of formulas of narrow 
calculus of predicates, for the case of algebras eharae- 
tefizable with the aid of axioms of type- (14).  In the 
same paper / 51_/ is given an abstract of characteristic 
of predicates, representable by conjunctions of formulas 
of narrow calculus of type (.14)«. 

10. 'iProm the point* of view of algebraic applica- 
tions, of great interest is the Goedel theorem concerning 
the completeness of the narrow calculus of predicates. 
!The point is that with' the aid of this formula' it is pos- ' 
sible to prove many theorems concerning theorems of alge- 
bra, making It possible to obtain immediately entire se- 
ries of algebraic theorems* A. source of such theorems 
concerning theorems is* abmre_a.ll, a general theorem ob- 
tained by A. I. Mal'tsev /■ 7_2 is Wl with the aid of the 
results of hie work ,of, 1936 / I^Jt  devoted to a generali- 
zation of the Gfoedei theorem. .The theorem of A. I. Mai' 
tsev reads as follows: , For. an infinite' system of formulas 
of narrow calculus of predicates, admitting the relation  
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of identity and an arbitrary set of symbols for indivi- > 
dual objects and predicates, to be compatible it is neces- 
sary and sufficient that eaeh finite subsystem of the 
ip/ven system be compatible,.        ■'■-.'■ 

A considerable "number of algebraic looa.1 theorems 
can be derived fro.raJ;his principal local theorem. IK. the 
same reference I lj  this formula was applied to the solu- 
tion of certain problems in group, theory which a.t:that  i- 
iime were. not yet solved. ■     '■■■ ■.    % 

„, Ihis theorem was also used by A, I, Mal*tsev (in 
. 52j")  and by A. A4 Vinogradov (in-/"2, 5 /) la- *ke 
dieory of ordered groups. 

To prove concrete local'theorems.of algebra it Is 
usually necessary to introduce auxiliary* constructions» 
•n L  32./ A. I. Mal'tsev derived, from.the basic local 
theorem three more particular local theorems, which do not 
-equire ^these auxiliary constructions,  In the same refer- 
nca L  **L/ ofie of these theorems was applied to the 
heory of ordered groups, '   ■ 

Another general theorem of the same .hind as the .ba- 
de local theoreio^of A, I. M&l'teev was obtained by'Yu* A. 
hilohanoTich £ \J'  through a gone rail sat ion of the' scheme 
:f PJ^of of 021e cf the tbeorerrjG on thoorejes of A, Robin- 
on.""* ; The theorem, proved'by Yu. A, Sbikhamovich, oon- 
isted of the followingt let us take an arbitrary.se- 
uence of axioms 

' «V.^.,... HL,,.. ,  s 
. ,  . ■ -(17) 

o mduo-cively define with the aid of (17) a new sequence 

o denote the class of Ixiomö':|Jfä,X$, .*.,Xm, ...) by £■.' Ihent 
Theorem .1.  If a certain äeilBitely-axicmatiaable 

■lass .of models,'definable by'-the axiom. Y, contains, any 
Model» then it contains a.lso »any X. model, where n    is 
constant that' depends on Ih      "l0 

Theorem 2.  If there exists a model for X t but not 
or P,-for a value of n .as large as desired, then the class 
is not axiomatlzed with the aid of a finite number of 

A«. Robirisoh.    -On the Keta-Kathematics of Algebra.  1951'. 
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axioms. 
With the aid of this theorem Yu. A, Shikhanovich 

£~±J  obtained several new examples of theorems analo- 
gous to the Robinson theorem. 

13. Algebra of Logic and Its Generalizations 

1. The simplest part of mathematical logic, and 
furthermore the earliest among all other of its sections, 
is the algebra of logic. This is precisely why it appeared 
for a long time that no interesting unsolved problems re- 
mained in it. Hovrever, in the last decade interesting and 
difficult problems were exhibited in this field, and a num- 
ber of new results and papers began to increase rapidly, 
perhaps faster than in many other branches of mathematical 
logic.  This is ,sconnected above all with the fact that with 
the rigorous growlii of automatization and telemechanization 
of industry, the role of those problems which the theory 
of relay-contact circuits has raised increased, and this 
theory has been using algebraic logic for a long time. 
Many of the problems in this theory are found to be impos- 
sible to solve by previously known methods and required 
the development of  new ones, including also methods in 
algebraic logic. Furthermore, the appearance of ever more 
and more new types of electric circuits (electronic, mag- 
netic, etc.) and the complication of those previously 
known8 requiring an adequate mathematical representation 
of functions and their elements, has given rise to the 
necessity of engaging also in such cases, in which the 
initial functions are not ordinary negation, disjunction, 
and conjunction, but various other functions.  This in 
turn has made it necessary to study various multiple- 
valued generalizations of ordinary algebraic logic. 

Work in these latter directions began in our coun- 
try already in 1950 — 1951. The initial points of this 
work were the lectures by P. S. Novikav at the Moscow Uni- 
versity in the fall of 1950, in which he formulated many 

1, Written by A. V. Kuznetsov, edited by A.A. Yanovskaya. 
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problems in the field of algebraic logic and indicated " i 
certain approaches to'their solution, as well as the. 
diploma v/ork of Yu. I. lanov (spring 1951, guided by A. 
A, Yanovsfcaya), connected vdth his analysis of the re- 
sults contained in the article by Rosser and Qhirquette 
"Many-Valued Logics." 

One of the questions raised by P. 8. lovikov was 
as follows? what are the necessary and sufficient eondi-.__ 
tione in'order that from among the functions ;#t, $a»7,.7'#^ 
of algebraic logic '* one could obtain any other function" 
of algebraic logic by; superposition (i.e., by insertion 
of functions in a function or by insertion of variables 
in a function), He alao showed in his lectures that the 
necessary conditions for the latter are, for example, the 
following; 1) l1he equality:%j(t,. ..■. ,t) = t is not true 
for all. i~l,2.' ...,*'; 2) the equality ; Wt (f,... ,f )= -f is 
not true for "all; i»1l,' %t _.'...',"*') 3) at least one of the. func- 
tions ftiiimi'i, %t .».,»}'■ is self-dual, i.e., it does not 
satisfy the Identity ■ 

Soon later a graduate student of P. S. Novikov, S« V. . 
Yablonskiy solved this question for the case n « •!,• show- 
ing that in this ease the conjunction of the three neces- 
sary conditions, indicated by P._S. Hovikov, is also a 
sufficient condition. "* In the spring of 1951 8. V. Yab- 
lonskiy solved the problem-completely, proving the follow- 
ing theorem: In order to be able to represent-with the 
aid of the functions /f#„,.,*.» ♦»' of algebraic logic any 
function of algebraic logic"7"-it is necessary and suffi- 
cient that for this system of functions the conditions 
1) — 3} of P. 8. Hovikov \>Q  satisfied, and in addition 
the following additionaltwo: 4) at least one of the 

functions -;^i (f^jfx^t*..♦..»..*)""   is no^  representable through 
the functions l^m'smfy'     5)  at least one of the func- 
tions   (l«f|»2» ..., #ij  is different from the constants 

1. That is, such functions, the arguments of which assume 
values t (truth) and f (false) and the values of which 
(functions") can also be these t and f .' 
2. Reported on the Seminar 'on Mathematical logic at the 
.Moscow State University at the end of November 1950. 
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-1, 
't A  f and is not representable in terms of the functions"! 
jisljf'' and i#V~f: .""'' By. representability of a function [#'in 
terms of functions '$)*..• :.>.*,&*.  we understand here the pos- 
sibility of obtaining the function !$>  from the.functions 
&u.*'J*^n   by superposition; If»-,.as is customary, the pro- 
perty of the. set of functions /{fc,^'.".., #Ä), is expressed 
by the'fact that One can represent through them all the 

-i remaining functions, 8.,n&. if this property is, called fimc-*__ 
ticnal completeness and if it is noted, that by identify« : 

ing (conditionally) the truth (t) with one  and falseness 
(f) with sero, we find that the representability of the 
function through x and :

:smy'    is equivalent to its line- 
arity according to X. 'I. IShegalkin £  2_/\  i.e.» in the 
sense of a ring of residues mod 2'., and the0representabl~ 
11 ty of the function in terms of 6, 1, xj  '"" and arVf 
is equivalent to its mo.notonocity  (if one assumes., as 
usual, that $<*)t' then the theorem assumes the .following 
form* for a functional completeness of a set A of func- 
tions of algebraic logic it .is necessary and sufficient 
that A not be included in .(or equal to) either of the 
following sets; l) The set of such f♦','" that(*(Ö, _...♦ Ö)*»0;. 
2) the set of such ;<#,*'  that ;#(|a , ;V, 1)«. 1; "3)"'the set 
of self-dual functions; . 4-). the set of linear functions? 
5) the set of mono tonic functions. Later on A. Y. ICuane-. 
tsor showed .that these five sets cannot be replaced in 
the theorem by any -others and have the theorem remain 
true« She latter is. connected with the fact1"* that these 
five sets and only these 'five are the so-called pre- 
complete closed sets of functions of algebraic logic. 
Here the closure (functional) of a. set B denotes that any 
function represented through functions from B also belongs 

1. This formulation of the theorem is close to that 
given by S. "V. lablonskiy in his lecture at the Seminar 
on Mathematical Logic at the Moscow State University on 
17 March 1951. _In"l952 S. V* Yablonsfeiy published this 
theorem in /. "5_J'« 
2. After identifying t with 1, and f with 0, the conjunc- 
tion x & y becomes a multiplication xj  mod 2, 
3. More, accurately ,*. Monotonie non-cirainishability, or,' 
in other words, isotopy. . '    ■ 
4. See theorem. 3) of it era 4. 
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to B. A set B i. Tf^'rfZ^TnX^ol^T^ pre-oomplete when B }. not fanot.one^ ° *  from , „* 

Moscow Matnematical Sooiety xn the faixsc 195^ ^ 
Kolmogorov considered the parxi ln otner or 
tion to substitutions o. oeitain *™ tolt8 als0 the sub- 
certain variables in a function,°"J ^rl  the superpo- 
stitution of constants ^V+Woregoing tneorem he ob- 
sition. As a ^^^^forem- in ordfr fir a set A of 
tained the following theorem. in °*    te relative to 
functions of ^?ebrf^f fB°ne°essa^ and sufficient that 
suoh superpositions,  " "*"! 0ne nonlinear function there he contained m A at least one a    ^ ^^ ^ 

and at least one n°n"»n°^ Yablönskiy, is contained ms theorem, proved by 3. V.1*1onskiy^ ^ ^ by pogt> 
(although in a somewhat different    ^ ^ ^ ^ 
which was published as early as «^ iB eiffipler and 
to us. True, the proof of &•  • ^ theorem as a 
sorter than that cf Post wh o ob tain ^ funotions 
corollary cf a r^?\^»iL£lng of 1953 A. V. Bun.- 

?„^^M~-äisirrrfroff r?he 

as a corollary. ,     f Post-YaDlonskiy) was 
2. The theorem itself £"£*    t0 inciude the case 

somewhat generalized Toy■ k.  Y^ functional construction 
of many-valued logic, whien n ts      & theory of 
(S. V. Yablonskiy L  IV ) xs xa*ei 

TT-IT^^netscv, Abstract: oi: the art^^Vlcu"- 
lonskiy "On functional Completeness 
iS*»te^»/?0 ^"terminology of the 
2. Weakly complete, accorain& 
paper by A. V. K»zne^0jiJKn the works of the Mathema- 
i.    This proof was Pf ^^51 (1958)f 18 - 20. tioal Institute imeni Soe^-OV, 51 ^^ 
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functions which, are defined in a set-; &"*(0;  Jt 2,..., .*— f},■'". 
in that sense, that the arguments of the' functions assume 
all values from -£*   and the values of the' function itself 
also belong.to £*•■ It was found that also for the case of 
a function of such a k-valued logic the sane holds: for 
the set A of (any) functions of k-valued logic to be com- 
plete it is necessary and sufficient that A not be inclu- 
ded (or equal to) in either case of the pre-cömplete ... 
closed sets of functions of k-valued logic.  It remained '■' 
only to find all the jjre-eonplete closed; sets'.  In-1953-: 
o. V.- Yablonskiy £  6_/ -obtained a list, of all the pre- 
coinplete closed sets for the case k = 3 (their number was 
found to be 18) ,• and. formulated, this result * in the form 
of a.theorem, '* analogous to the Post-Yablonskiy theorem. 
A simpler and compact form .was obtained for this list by 
A. V. Kusnetsov, who leaned on the concept, which he-' 
introduced already in the spring of 1951» of retention of 
the predicate. ..Concerning the function $fa, ..., xH)  . one 
says that it retains the predicate P{xv .♦., x,J,  if the 
formula 

3DP{w(Xni xlv .,., xnl), <B{xlif xsl, —, xny,..... ^(^u» *sw» • - •• *n*)) 

is true for all values of the variables «y (*»■ 1, 2t .... n;: 
j?a 1, 2,..., s).      ^ Tlie set of all functions which retain the 
predicate P.is called the class of retention of the pre- 
dicate P.  It is obvious that for any predicate the class 
of it's retention is a closed set.  Dhose five sets, which 
enter- into, the Post-Yeblonskiy theorem, are classes, of re- 
tention of the following predicates (defined on 

{0,  f>): x~0,  z**h  xq*y, *-f-jf«z+a, x^y 

(respectively), where the'sum is taken to be a sum 

1. 8. V. Yablonskiy. Problems'of Punctional Completeness 
in k-valued Calculus. Abstract of dissertation, Moscow, 
1953. 
2. A complete propf of it is found in the dissertation of 
o.  V. Yablonskiy, published in Trudy matem in-ta im.. Stek- 
lova (.forks of the Mathematical Institute imeni Steklov) , 
51, (1958). 
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'mod 2 * and the 18 classes from the theorem of Tablonskiy 
for three.-valued, logic are classes of retention of the 
following 18 predicates (defined on )'{Qf |a 2}]T 

; (x*»i) a {y «erI), xmy \>zm»i\/y**if  ««$ v &«** V f ■»*». 

where i is a parameter thaF" assume" the 'values 0, 1," and 2, 
...,; while the sum is taken in mod 3-. "Already in 1951 A* V. 
Kuznetsov proved that any prefi'lled closed set of func- 
tions of k-valued logic is a class of retention of a cer- 
tain predicate, which depends (for ]4?>% on not more than 
k arguments, From this he obtained the-upper estimate. 
for the number -\H    of pre-oonplete closed sets:/fy< #*.'■ 
However, attempts to* find an ex-act estimate of the number 
and, furthermore, to obtain their total list for a gene- 
ral k-valued case entail great difficulties. A. V. Kua- 
netsov and 3. V. lablonekiy have constructed a series of 
families of pre-complete closed sets, which generalise 
the preceding examples to a k-valued case. These inclu- 
ded the classes -of retention of the following predicates* 
;*££» where S is mot empty-'and differs from'^0," I,/.".,"«-—!);. 
f{fc)«w|r» where f ■ is such a function, that the substi- 

tution 

is such that all those (independent) cycles, into which it 
breaks up, have the same length, equal to a certain simple 
number; any predicate of partial order"* p(x,y), satisfy- 
ing the condition 

. . {Ex) if) P (art t*> 4 (£y) (a) P (x, f)i 

any predicate of the equivalence type"** which differs from 
x « y or from the identically true one. More complicated 
examples were also constructed. However, the number of 
these'classee did not increase very rapidly with increasing 
k« And only in 1955 did A* V. Kuanetsov succeed in point- 
ing the way towards proving that M >2^

S""1' where;* tends 

1. Reported to the Seminar on Mathematical logic at the 
Moscow State University by A. V. Kuznetsov on 26 May 1951. 
2. That is, reflexive, transitive, and anti-symmetrical. 
-3. That is, reflexive, symmetrical and transitive. 
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to 0 with the increasing k. ~~\ 
Searches for a list of pre-oonplete closed classes 

and an estimate of the number are Important in. connection 
with the problem of'perfecting'algorithms for the prob- 
lem of recognition of completeness (of finite) sets of 
functions.of k-valued logic«  The very existence of such 
an algorithm, a single one for all k, was proved already 
in 1951 by A. V. Kuznetsov, * although the initial ver- 
sion of this algorithm, was little suitable in practice, v ■ 
owing to the cuBfDerso.me.ness of the derivation. As to the 
problem-of recognizing, the pre~com.pletion of sets of 
functions, it is still unknown whether there exists :a 
single algorithm for all k. A. V»  huznetsov -/ 3_/ proved 
in 1956 the .existence of an algorithm corresponding to 
this problem for each fixed k, and the proof is non- 
constructive. 

Also investigated was the question of what number 
«k» is maximal for all possible cardinalities of inde*- 

rendent sets of functions of k-valued logic. ., Here the;,. ;-jj 
set A is called independent if no function $££ can be 
represented through other functions from A.  It is ob- 
vious (A.__V.__Kuzne'tsovJ_ that **<?*..  -3. Y. Yablonskiy 
showed {/_  3_/ and / '1_J. that ;^i"'i4  (an example of a  • 
complete independent set of four functions:. 

'(&, \?*9* *•*•* + *))> 6<«fl<7 (example: |0, 1,2, mim.(x., y), ' 
»ift(.x-+- *» 9-f t)H-2, mlm{x-^Zt |r4-2} + ij, where the addition 

is in mod 3). 
The difficulties connected with the absence of 

sufficiently convenient general criteria of completeness 
of sets of "'functions, ■ raise an-interest also in various 
particular problems, connected with an examination of 
sets of a definite type.  These problems above deal with 
(functional) completeness of (universal) algebras.■• An  < 
algebra .%    with, operations #,,.,.,.,*&*. iB called complete 
(or weakly"* complete) if the set •f^i«<**»J?^i}V is complete 
(or, respectively, weakly complete")*'"* as a set of functions. 

1. Reported on the Seminar on Mathematical logic at the 
Eos cow State___"University, 26 May 1951.  Mentioned by S. V. 
Yablonskiy ^/ 6_y. _' _     ' 
2. In the sense of A.__Y. Kuzn.etsoy /_ 3^/i   see also 
footnote 3 on p. 104-' £  of source^/, 
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'it iß easy to note that no groups, rings, or lattices   j 
(which have more than one element) can be complete. How- 
ever, as noted already in the spring of 1951 by A. V. 
Kuswietaov (who.generalized the well known theorem of I. 
l\  2hes?alkiE. concerning the completeness of the*set . 
;{!, x«t x* yfawdZ)}), a ring of residues of integers in mod k 
is weakly complete when and only when k is a simple num- 

-ber* In 1955^A. V. Kusmetsov proved the following gem-  ,  
''ralization of this theorem: for weak completeness of a 
riöÄ it is necessary and sufficient that it be finite, 
simple» with non-aero multiplication. * He then proved 
that for weak completeness of a group it is necessary and 
sufficient that it be finite, simple, and non-Abelian. 
Both these theorems4were found to-be,-as soon noted by 
A. V, Kuznetsov, particular cases of the thorem for quasi- 
rinc- (in the sense of A. I. Hal'tsev), analogous to the 
first of these,  In 1956 A. V. Kuznetsov noted that any 
finite structure after adding "to the number of its opera- 
tion the operation ;*-vyJ*'^J'   is equal to 1 (unit of 
the lattice) for x * y and is equal to 0 (null of the ^ 
lattice) for *¥ff becomes a weakly-complete algebra. 

4. ' In addition to the usual completeness and weak 
completeness there were investigated also other types of 
completeness (in the.more general meaning of the word). 
The general statement of the problem of completeness was 
given in the lectures of A. V, Kuznetsov on algebraic 
logic, delivered by him at .the'Moscow State university in 
the fall of.1957. He laid the groundwork for a general 
concept of operations of closure for subsets of a certain 
fixed"set K,'and with this the operation \JAh  defined for 
all \A£M>   is .called, as usual,"" the closure operation,' 
if It has the following, properties: 

: f*i'jftC(4JCM:  (exteriorness, or extensiveness). 
r. tM)J»»|ä]' ' (idempotency). 
3V If AGB,  then \A]£lB]    (isotonicity). 

TI  5haTTs7~not for all elements a and b of the ring 

ab = 0. ' 
2. Reported at the Seminar on Algebraic Logic at the Mos- 
cow State University in December 1956. 
3. G, Birkhoff, Lattice Theory, Moscow, Foreign Literature 

Press, 1952. 
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3?he set A is called closed if [A]** A<      A is     '< 
called complete, if [A\**M,    A is called pre-con;plete, if 
it is not couplet«;, but for any element <$$M\A    'the 
set : A LM?) is already complete,' The  aggregate %    (-of 
certain) subsets of the set H is called criterial i.f for 
any ACM    the following holds;  A is complete when and 
only when there does not exist for It euch a B, that 

; AC1B£%,       The  aggregate %    is called completely crite-, 
rial if it is criteria!, but no regular part of it is 
criterial. All these concepts are defined with respect 
to given sets K and operations of closure of its subset. 
All these concepts are defined with respect to subsets 
relative to the set K and its closure operations. 

Prom these definitions one naturally obtains (Al 
V. Kuanetsov) the following theorems: 

1} l?he aggregate of all incomplete closed sets, is 
criteria!, 

2}  If there exists a finite criterial aggregate 
£, then there exists also a finite fully criterial 

aggregate $G%t 

3)   -If there exists a fully criteria! aggregate, 
then it is. unique and coincides with the aggregate of 
all pre-conplete closed .sets« 

Iron among the less general theorems proved by A. 
V. Xuanetsov» let us mention hers the following two.' 

a) let M" be a certain closer! (in the sense of 
items 1 and 2)   set of functions of k-valued logic, and 
tne closure [A]   (where AC My  is a set of all functions 
frora Mf   represented through "'the- function from A; let 
there exist a complete set B, not containing the func- 
tions which depend on more than n arguments; then the 
aggregate of all classes of retention of predicates dif- 
ferent from II, defined on .|0» it 2», ,..4■*— f|  and which 
depend on not more than '#* 'arguments, as-a finite cri- 
terial aggregate» 

b) Let M be a set of all functions of .k-valued 
logic, and let the closure  M) M£M)   be the set of 
all such functions #gM, that (for* - $}"   there exist 
such functions  4&lt;.. .»♦»£^ and such a system of func- 
tional equations, which uniquely defines a (n + 1)- term 
collection of functions  ^:#15..., $n  and, in.addition 
to the signs of these defined functions and functions 
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— -i~ __. ■ 

belonging to A, it does not contain any other signs of  i 
functions;  then for-'completeness of the arbitrary set 

\ &CZM     it is necessary and sufficient that the, algebra 
with the element 0, 1, 2, .'.;, k-1 and operations belong- 
ing (as?functions) to B have no non-trivial automor- 
phisms ♦'** 

Another interesting example occurs when M is the 
set of all the functions of (ordinary) algebraic logic,. u. 
and the closure /f4J, is a set of all those furictionq^J'Äf,'■' 
which can be obtained from the' functions belonging to"A 
by inserting the variables into the function. It is found 
that the set of all symmetric functions  is found to be 
complete even in this sense. Indeed, G. K. .Povarov calls 
/~"ll_y the function /*(*i* •••* ^-quasi-symmetrical with res- 
pect to weighting / i^ <&*••**]|Wr (weights ascribed to-the 
variables), if there exists such-a symmetrical function S 
that 

e*W - *■ *»• %#,aw'**fr%» ***■»*^» %»«♦««ar$».»»»snt ...»x^). 

As noted by V. II. Roginskiy (see G-* IT, Povarov / llJO , ^ 
any function of algebraic logic (#1*^..V'.T»JÖ:   is <3-uasi~ 
symmetrical with respect to weighting ji, i* 4._.^»»1*^« 
__    Another ease is considered by*' S. V, Yablqnskiy in 

£~%J  and L ~^Jl    M is the same as in the preceding exam- 
ple, and the closurejM) is a set of all those functions, 
which are Constant or are obtained from functions belong- 
ing to A by substitution of constants and substitution of 
variables, when equal variables cannot be substituted in 
the place of different ones* Sets closed in this -sense 
are called by 3.'V. Yablonskiy invariant. He gives the 
following examples of invariant sets: the set of all li- 
near functions', the set of all symmetric functions, the 

Tl     Compare with theorems III and IV of item. 5 of Section 
8 of the present article. 
2. v/e note that non-trivial automorphism is the retention 
by all the operations of the algebra of a certain predi- 
cate of the form jf &)**&    where / *(*) is a mutually-single- 
•valued function different from x. 
3. A function is called symmetrical, if it does not change 
under any rearrangement of its arguments. 
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set of all monotonic functions, the set of all functions / 
that depend oh not'more than n variables. He then proves 
that the cardinality of the.aggregate of all invariant 
sets of functions (if t'hej  cannot have arguments differ- 
ent from %»*s» *•*♦*&.••.} equals the cardinality of the con- 
tinuum; the .same holds also for the aggregate of only 
those invariant sets Q, for which 'ß^'C^OS^t,  Her® 

**<s(*)r is the number of functions from Q which depend 
on   %,...,xn.        S. V. Yablonskiy shows that, with 
increasing n, for any invariant, Q   ^HFTCHA' tends 

without increasing to a limit that lies in the segment 
. [1,2], .and if Qj,M,  then nm ÜS^W.o. 

5*     Certain theorems, which hold for k-valued .-lo- 
gics, are carried over also to so-called infinite-valued 
logics.  Thus, let us take the case when M is a set of' ■ 
all functions, which are defined in the set E (finite or 
infinite);  in that sense, that the arguments assume' all 
values from 3 and ,the /values of functions also belong to 
E, and the closure : fJ) is 'a set of all functions repre- 
sented through functions from A. As proved already ,_ih 
1951 by A. Y. Ruanetsov, no matter what E may be, there 
exists such a set of functions $$M,   which is complete, 
but in which all the functions with the exception of one 
depend on a single argument.  (In the general case in the 
proof of this one uses the selection axiom, but it is not 
required when S is fully ordered, or» for example, con- 
tinual). *  The class of retention of predicate x££\ 
where ,£''CZ£", and is not empty, is also a pre-complete 
closed set for all such S' and S. However* in the case 
of an infinite S there no longer exists any finite com- 
plete set, or any finite criterial aggregate, this being 
connected with the fact that 11 is not denumerable. 

It is therefore interesting to consider certain 
intermediate cases between k-.valued' logic and such infi- 
nite-valued ones.  One family of such cases was the sub- 

1.  Reported at the Seminar on Mathematical Logic at the 
Moscow hitate university, 26 May 1951. 
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ject of a. paper by 8. V. Yablonskiy at the Seminar on   ! 

Mathematical Logic, held at the Moscow State University 
on 23. October 1957. 

3. V« IfablOGskiy considers an'example, when the 
foregoing set E is a natural/ series, and seeks such 
closed sets ;PO.M, which satisfy the following condi- . 
tions: 1) P is denumez*able; 2) for any natural k there 
exists such a •}J*$ClV which is homomorphiealiy mapped on i... 
the set of all functions of k-valued logic. Such P he 
called limiting logics.  (Hoinomorphic mapping of one set 
of functions on another is called here by S. .V« Yablon- 
skiy such a mapping, under which sets of arguments of 
functions from these two sets are placed .'in mutually- 
unique correspondence, the image, of the function is a 
function of the corresponding arguments» .and the image of 
the result of the superposition is a result of the cor- 
responding superposition of the,images. Homosorphism in 
both directionsf as usual, is called isomorphism), S. ?. 
Yablonskiy gives simple examples of limiting logics and 
then constructs a continual family of pairvd.se non-iso- 
morphic limiting logics« "". 

6» Many other problems of algebraic logic, in 
which we are engaged here f  are more directly connected 
with the theory of relay-contact circuits or other devi- 
ces of relay action and usually arise under the influence 
of its needs. Being unable to discuss in this article all 
the investigations in th-U field, we shall touch only upon 
certain of these the results of which pertain to the al- 
gebraic logic itself j and not only to its applications«, 

Among investigations of this kind are those devoted 
to problems of functional separability and so-called unre- 
peated superpositions.  Investigations of these problems 
"began in our country in 1951 and were caused by an evalu- 
ation of various difficulties, which arise in the study of 
bridge-type" * contact circuits.  The starting point was 
the remark, .made at ■ the Seminar on'Mathematical Logic of 
the Moscow State university by P. 3, Hovikov, on the 

1.  1'hat is to say,, not obtained from trivial ones by 
merely.parallel and series connections, adequately repre- 
sented by operations of disjunction and conjunction. 
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absence of the mathematical proof of the fact, verified : 

bv nanv ears experience and stated nany times by Y.   I. 
Shestahov in his lecturer, that even for the simplest 
bridge circuits, the corresponding function 

M{iH,b,e4^)^&d\/ac»ybcdyhe       cannot be represented through 
functions of two arguments in such a way that in the ex- 
pression serving for its representation'not one of the: 

letters would be encountered more than once, 
The impossibility of such a representation, 

called by A. V. Kuznetsov the unrepeatecl superposition,- 
was soon" proved by the latter.  With this, A. 'v. Eusme- 
tsov proved more for the function M(a,b,c»d,e):  it can- 
not be represented by a&.unrepeated superpocition in terms 
of functions of-a smeller number of arguments than the 
function itself.  The f-unction with this property -are 
called (functionally) non-separable.  ilhen A. vh^husne» 
tsov Droved a more general theorem on non-separability of 
any function from a certain sufficiently bjoad class of' 
functions, connected with bridge circuits. "*  The results 
of A. V. Kuznetsov are .based -on the following leimaa; : in 
order for a subset ixi1*—<x<m)   of a set of arguments of 
functions of algebraic logic  «K^t *•••>*«)   to be select- 
able in the sense of the- existence of such functions t 
and  £,  that '  ■ 

where all indices i. ,-...,! are different), it is neces- 
sary and sufficient"Shat from the function   #, with all 
■DORoible substitutions of zeroes and units at the place 
of all the variables from this' subset, one obtain not möge 
than two different functions of the remaining arguments, 
later A. V. Küsnetsov,noted tbat this proposition is gene- 
ralised in case of functions of h-valued logic, if the 
"zeroes and units" are replaced in thera by "the values 

1. heported at the Seminar on hathematical logic at the 
HOBoov/ State 'University, October 1951»  Published in. the 
works of the Mathematical Institute iiaeni Steklov 51 
(1958), 186 —.200,.- 
2. A urouosition close to this_was published, in 1^54 by 
G-. LI. Povärov in reference [_ ij, for the first time al- 
though after it was reported by A. V. Kuznetsov. 
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0, l,...,k-l»" ana the words "not more than two" are re- i 
replaced by the words «not more than k.« In the case of 
a function of infinite-valued'logic, all the subsets .of 
the arguments are selectable»' 

A, V. Kusnetsov proved several propostions con- 
cerning the selectable subsets of functions of algebraic 
logic, including the followingt .. • 

1) If A and B are partially intersecting,, (i.e.,  ..... 
\A'[\B^A\B and u$\"4s are not enpty) the Jjolectable sets/ 
of the""arguments of the function j$«j ther^.J^#JÄ_ÜJ^.ßiS3l} 
and IMSM..    a^e also selectable. J ''■•..• 

2) For any function, the selectable sets foria a 
lattice relative to inclusion* , 

3) If „the sets Jj^fl' and ;|f»4' ere selectable in 
a function !*fe.J?ci. which depends'"essentially on all 
its arguments, then" ' r*.(ar, f^«Ö' "0&-n. bs .obtained from one: 

of the'" following functions f1J^*V if V»t * + » +*»',' by 
replacing the variables with, their negations. •• 

These propositions are not generalised in the' case 
of k-valueß login, Thus, for example,  as noted by A« V» 
.Kusneteov/"* the function l#|it"|,ij «1 Hl*+f*^^®l«^.§: 

is such that the sets ('{*, §^ranXlll?*XM ;""äfe""s9lectäB'le, 
and their xntörseötioir'{fyV*5l"| is not selectable. _ In the ■ 
same place A. V. Kuzneteov proves -tfhat any two represen- 
tations of the functions of algebraic logic in the form 
of non-repeated superpositions through non-separable func- 
tions are in a certain sense almost identical and indi- 
cates then a way of selecting, from anong all such repre- 
sentations, in a definite sense, the canonical ones, which. 
are now found to' be'unique for each function.  Inciden- 
tally he considers cases wheu the function ;^.fe«/^*3)|can 

be represented in the forra j6|f|^.-.»^)|t. XC**«WM ♦••♦*ft3V. 
where" all the indices ; ^t/.,.t^''hare''dIffeÄ 
is one of the following^three'functions: \&.:]*y.& :*+}£' 
In the case when i &{*. •)■■**»,the function ,#"'1 is' called a 
.^function, in tbe'"o^'e" when\iWiiJ«af'VjM-t is called a 
Li-function, while in the eaee ot*ifaj^$-jrplt  is called 

a ^function» A, V..Kuznetsov proves""that the set of 

1. Published in the Works of the Mathematical Institute 
imeni Steklov; 51 (1958), 205 — 211. 
.2.  Ibid. 
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''s?-functions, the set of  4-functions, and the set of  ' 
<* functions do not intersect pairwise.  G-« IT, Povarov 

,/l__/ proved that any symmetrical function of algebraic 
logic, different from the functions 

1' *«** •• • • *». *t*% • - • *m,-Xj «hxa-f ... -f-x^ 

and of their negations, is non-separable, 
7«  G-. IT. Povarov investigated also many other 

questions concerning symmetrical, monotonic, and related 
functions of algebraic logic«  Prom the result,-», he ob~ 
tained we shall mention here the following. 

1°. In order for the function #(*,,..., a^f: to 
be symmetrical,, it is necessary and sufficient that the 
following two identities be satisfied for it: 

*(x„ xv ...., *J«#f.?a, xit x^ ... , arj «**fza, xt, ... , aÄ, *,). 

The functions  ® and f are called "of the same 
type" if #' can be obtained'from \W,    and T  can be bb- 
.tained from $   by substitution of variables'of their 
negations.  The single-type relation is of interest, .- \ 
since the single-type function-differs little when repre- 
sented through various functions, among which is x, and 
also in the rea.liza.tion by contact circuits or similar • 
circuits, and can be readily replaced by another.  G. N. 
Povarov showed (for functions of algebraic logic)? 

2Q.  The "number U of tynes-of functions of n 
n variables is estimated to' be 

5T2S < ^* < («+ •) STaJt • 

where '».. tends to 0 with increasing n. 
5°.  The. number of types of symmetrical functions 

of n variables is equal (for JI>1) 

r*i  r*tn 
■ c * 

4°.  The number of functions of n variables, which 
are of the same type as the symmetrical ones, is equals 

1. Published in references £  4, 5, 6„_/. 
2. here and henceforth, ■■{*) will denote the integral por- 
tion of the number * . 
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8» A'. A; Markov in his paper £ 5'5j  considers the 
question 'of estimating .'the inversion complexity of finite . 
systems of functions of algebraic logic. • Here the "inver- 
sion complexity" of a system'of functions-/#i, •-» $» is 
called the least of the numbers ;.« such that there ex- 
ists a system ; %,".'.". »'*»; of" representations of given 
:functions in terms of"/.*,.'£ and ^.V^.-'in which, the num-,., 
"!ber of different-negated subformUlas (i.e.«., those directly 
mid er a negation sign), is equal'to ;«.:  A, A. Markov  . 
proved that the greatest of the inversion complexities of 
a system of' m  functions of n variables is equal to D(n) 
for„V>t and pd(D(n.+ 1)) for m -.1, where pd(r) has^a 
value r"..- 1 when If >0'. and a value of 0 when r = -0, while 
D(r) is the so-called binary dimension of the number r, 
defined by A. ^.Markov as the-'least of such natural num~_ 
bers ;i  , that r<T>  (i.e. ,J><<9.-0' ^««M+l^^^- 
In addition-,-' A. A." Markov introduced the concept of- sign- . 
variability of the function ,%£. giving this name to the 
largest of the possible numbers of reversals of the value 
of the function i# upon monotonic change' of the values of 
all its arguments, increased by unity (for a more accurate 
definition * see £"53 J) ♦ OTä Proved tlae following theorem: 
the' inversion complexity of a function -'J£-.' (i*e«, of a 
svstera consiB-äna; of a single functional  is equal to 
pd(D{h\%(#))), where Mt^>) is the sign alternation of the ^ 
function <#.; r     1 

9. ihs'problems solved in the Karkov paper/ 53_/> 
which is discussed in the previous item, serve as examples 
of a broad class of so-called problems of minimisation, or 

' in general problems of simplification of various means of - 
representation of functions of algebraic logic and esti- 
mates of to what extent, in a maximum fashijn* they canbe 
simplified in a certain respect or another. * By minimi- 
zation one means precisely the maximum .simplification, 
.In means of representation (or in-other, words» realization) 
of functions of algebraic logic are meant to be various 
tyses of expressions of algebraic logio, relay-contact, or 
other-circuits, etc.  The problems about which we speak 

1." See A. Ä. Markov / 53 J,  for example, with respect to 
reducing the number of negations. 
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have been extant in technology for a long timei The atten- 
tion of our mathematicians was attracted to them under the 
influence of many lectures by V. I. Shestakov at the Mos- 
cow State university , the lectures of P. 3. Novikov on 
algebraic logic (Moscow State University, fall 1950), who 
formulated many questions more accurately, and the lectures 
of G. N#- Povarov (at the Moscow State university and the 
Mathematics Institute imeni Steklov),, who investigated the 
problems connected with the estimates given in the works 
by Shannon. 

Prom among questions of this kind, the first to at- 
tract attention of our mathematicians were questions of 
simplification and minimization of disjunction normal 
forms (MP). Among the Soviet mathematicians, the concept 
of the abbreviated DKP was first introduced (1951) by a 
student of P. S. Növikov, S. V. Yablonskiy, * who defined 
in reference /~3_/ this form with the aid of an algorithm 
by which it is obtained from the perfected MP, and who 
applied it to the investigation of monotonic functions. 
Soon after this, A. V. Kuznetsov engaged in the study of 
abbreviated DM1, and he, on the basis of another, more 
direct definition of these forms, illustrated their signi- 
ficance to many problems in the theory of contact circuits, 
particularly for questions connected with a so-called non- 
repeating circuit and the problem of generalization of the 
principle of duality for two dimensional circuits (proving 
the impossibility of its generalization for non-planar 
circuits).   In connection with this circumstance, ob- 

T7""IGolmklogous concept, differently defined and named, 
was contained in one paper by Black, lithographed in Chi- 
cago in 1938, as turned out later, and it was considered, 
almost simultaneously with S. V. Yablonskiy, by Quine (pub- 
lished in the U.S.A. in 1952). See Works of the Mathema- 
tics Institute imeni Steklov 51 (1958). 
2. These results were first reported in the fall of 
1952 at the Seminar on Elementary Problems of Mathemati- 
cal Logic in Moscow State University (see Ibid, pp. 
174 __ 185). 
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JL 
served by Quime, that the. abbreviated DEP sometimes 
admits of a further simplification (owing to the fact 
that some of its terms are absorbed by disjunction of the 
remaining terras) , the concept of minimal Dili1"' came into 
use. A minimal DNP, and.also the related so-called blind- 
alley DI£F engaged the considerable attention of S.'V, 
Yablonskiy and hi3 students (Yu. I. Zhuravlev» L. Yerma- 
kova. and others).  3. V« Yablonskiy gave'a geometric . ..... 
form * to the investigations of the DWi  (and general 
functions of algebraic logic), at which each group of n 
values of the arguments of the function j<lK*|t.-.***)' was 
assigned a vertex of a unit n-dimmensional cube, and to 
the function itself — the set \£^   of all the vertices 
of the cube,. corresponding to those groups of n («s,.*.,*»),> 
for which." ^«t,.-...«y=i, and to each DHP of the function 

' $,   —- a certain covering of the set >£» by a system of 
so-called intervals of the cube (i.e., vertices, ribs, 
faces, etc.).  'The concept of a rank of an interval is • 
introduced,'on the problem of minimization reduces to 
finding such a covering, the sum of the ranks of which- 
is a minimum,  w'ith this, he considers also that case, 
when the function '^(x,.;...^) . is defined not for all 
groups of n values of the- argument, but only for a cer- 
tain set A of these end upon suitable simplification'of 
the representation of its expressions by algebraic logic 
(which equals to it on A) the latter can be. replaced by 
others, not equal to them outside A (but also equal to the 
functions fy    on A). 

Such functions were considered earlier in several 
papers by V. N. Roginskiy'(see,-for example, / !_/)• 
S, 7, Yablonskiy has adopted for the consideration of such 
functions the concept of separability of sets, taken over 
from the descriptive theory of sets (see Sections 2 and 
8). Using this constant, Yu. I. Zhuravlev solved com- 
pletely several problems connected with, minimization of 
such (not everywhere defined) functions / 2_/.  Inciden- 

Y".     ihTse~resuits were first reported in the fall of 1952 
at the Seminar on Elementary Problems of Mathematical 
Logic in Moscow State University (see Ibid. pp. 174 — 
185). p. 23 — 27 and 143 -- 157 (paper by Yu. I. 
Zhuravlev. 
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Incidentally Yu. I. Zhuravlev obtained a criterian which • 
permits recognising whether a certain system of intervals 
of the cube covers a certain interval, i.e., whether a 
given term of a certain given DNP is absorbed by the ag- 
gregate of its remaining terms.  Quite recently Yu. I. 
Zhuravlev succeeded in defining a new canonical (in the 
•sense that it is uniqriely determined from, the function) 
,MP, which is much simpler in many 'cases than the abbre- ••- 
"'viated DNF, but which still is such that all minimal DBF 
are obtained by its simplification (if it is not, minimal). 

A new relatively stole algorithm fo^the cons- 
truction of an abbreviated J)NF, ana fram.it all minimal 
DNF (and also the analogous conjunctive normal^orms (CNP| . 
was recently constructed by Ye. K. Toyshvillo.' * In the 
first part of this paper (the finding of the abbreviated 
DNF)- this algorithm is related to the well-known algorithm 
of Nelson, but differs substantially in a more rational 
method of opening the bracket (when going from the CNF 
to the DNF) with the aid of a unique operation introduced 
by Ye. K. Voyshvillo, so-called carrying outside the ver- 
tical line, used in the second part of the algorithm. 
The difficulties as well as the possibilities of over- 
coming these difficulties(in the sense of eumbersomeness 
and laboriousness), arising in the opening of the brackets 
with respect to the distributive properties,_were. investi- 
gated earlier also by S.JT.JTablöMkiy £  10J  in his joint 
work with I. A. Chegis / \J.t  devoted to the theory of the 
so-called tests for electric circuits, i.e., such sets T 
of groups of n values of variables,■which for a given cir- 
cuit are such, that in order to verify the correctness of . 
the circuit it is enough to verify the function I ?&*.• »•*«>■' 
which realizes this circuit on 2.  To open the brackets he 
-proposed a uniaue geometric method, based on the use of 
the so-called sieve, related to the known sieve operation 
in descriptive theory of sets (see Sections -2 and 8 of the 
present article). As noted by S. V* Yablonskiy, there is 
a close relation between the minimization of the tests and 

1  Ye. F. Voyshvillo. Method of Simplifying Forms of Ex- 
pressions of Functions'of Truth, ffeuchnyye doklady vysshey 
shkoly, filosofskiye nauki ±  Scientific Papers of the High- 
er Schools, Philosophical Sciencesj  Ho. 2 (1958). 



: the minimi a at ion of the DW,  and consequently many re-  ; 

suits pertaining to the construction of tests can be 
carried over „to the construction of .minimal ana. blind- 
alley DJTP. 

10. From anong the results in. the field of mini- 
misation, connected with estimates of the extent to which, 
it ie possible to simplify a given type of representation 

_ of a function of": some class, one of the first results in .. ■ 
;our country was the following one of 3. Y. Yablonskiy. 
~n L  5_y Yablonskiy gave such a method of representing 
linear functions of algebraic logic in terms ■ x, xy    and 
zYy, for which (in the representation of a function of 

^variables). the number'of (variable) letters is less than 
ig-nV.  later on Y. K. Korobko gave in / 1_J/ a method of. 
representing symmetrical functions in terms of >~xt zy\     and 

xVy,     in v/hioh the number of letters is less than 

9,375 [!g, n] - 2<f i«t «3" t- £«ia*3J/2. 

3. I. iihnkov investigated' the representations of such func- 
tions  '$(,3?j iH)  of algebraic logic, which -assume values 
of 1 only on a snail number' of .collections  («,,...,an) . of 
values' of arguments, and showed £  1__/ that for any such 
function, there exists a representation in terns of x,,xy   ' 
and z.\/y>      which has not more than 2ft-f/.2<~< letters,. 

Investigations of estimates of .more general charac- 
ter, co n c e rr, i ng t he r e p r ©sent a t i o n "(re a 1 i z a t i o n) 0 f fun c - 
tions (or other objects, the nunber of which is estimated) 
by various means xrora a- sufficiently broad class,_j-,rere the 
ground work ,for the work of 0, 3. Lupanov / 1, 3__A  Por 
the quite general case considered in them (generalized.cir- 
cuits, constructed from a definite stock of elementary 
means), 0, 3. lupanov .gave a lower estimate of the comple- 
xity of the minimal representations, which generalizes the 
well-known estimate of Shannon for the representation of 
»functions of algebraic logic by contact circuits. 

11. Ye. Krichevskiy""* considered a case of represen- 
tation of the function of k-valued logic of n variables in 
terns of a function of an arbitrary given finite set, and 
obtained a generalization to that case of the well-known 

1^ Printed in the collection "Probiemy kibernetiki 
l_ Prebless of Cybernetics^/, Ho. 2.      . . 
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:-estimate of Elordan and Shannon for representations of  ' 
the functions of algebraic logio in therms *, "sy-  and 
\xyyJ     Indeed, R. Ye.- Eriehevaltiy showed that "the num- 
ber~of letter, variables in the representation of a certain 
(poorly representable) function should be greater than 

!■■* - ^MgJ»V where '[•] tende to .0 with increasing n. - 0, 
jB. Lupanov, obtaining a corresponding upper estimate, re-u 

"'oently showed that this estimate is asymptotically exact 
for k"s 2. R. Ye. Kricbevskiy considered, ;.j&a the other 
hand, a generalisation of his estimate to the case of 
representations obtained by superposition of arbitrary^ob- 
jects of. a certain nature. An example ' of such, differing 
from the ordinary one» are, for example, superpositions 
of contact circuits, put into consideration in 1951 by 
A. V. Kuznetsov _and contained also in the paper by B. 
A, Tra.khtenbrot £  4_/. 

11. We gave above several examples of this deve- 
lopment and generalisation,.to which algebraic logic is 
subjected more and more in recent years, particularly un- 
der" the influence of questions which arise in its appli- 
cations.  This process of development of algebraic logic 
went far beyond the limits of its previous boundaries 
(Boolean algebra and prepositional functions) and inter- 
twines with numerous other fields of mathematics: general 
theory of functions, for example, functional constructions 
in k-valued and infinite-valued logics), general algebra 
(for example question of functional completeness of uni- 
versal algebras and the use of the general concept of 
operations of closure), topology, and combinatorics (the- 
ory of contact and other circuits and other means of rea- 
lization of functions of algebraic logic, superposition 
of arbitrary objects, etc*),  tfe give a few other exam- 
ples. 

■ Cne of such examples is the theory of matrices on 
Boolean algebra, developed (in connection with the appli- 
cation of circuit theory) principally in the papers by A. 
G. Lunts / 1, 3, 4-J7. From among the other papers in this 
field; we mention the'work by M. L. Tsetlin I 3j  and G. N, 

lT 'In'the"~paper delivered to the Seminar on Mathematical 
Logic in Moscow State university, October. 1951. 
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Povarov /~3_A A. V. Kusnetsov proposesx' to carry out ' 
many considerations not in 'the algebra, of matrices on 
Boolean algebra, but in the algebra that is isomorphic 
to it of relations» and. outlines certain' constructions _ 
connected.vn.th. this.' G. H. Povarov in his papers [_ 10J 
and / 14. / considers matrices on algebras of more gene- 
ral form"than-Boolean algebra, on so-called mraeroicls. 
Here a numeroid is called an algebra by two organizations,:. 
— addition and multiplication, of -/hieb, the multiplies- 'h 
tion is distributive relative to addition» and. both ope- 1 
rations are associative and commutative and such that  . 
there exists such a unique element 0,, thatj0+£»*+0«**ri 

and such a unique element 1, that 1 -XSK X't^x.  Matrices . 
on such numeroids (an example" of which is the natural 
series with ordinary addition and multiplication) and 
the so-called quasi-minors of these matrices,' are used 
by G. IT. Povarov for the analysis of circuits and graphs. 

Other examples are the various formalisms that are 
being built up for problems connected with so-called 
multi-step.relay-contact circuits.(or other circuits of 
relay action, i.e.». in.general finite automatic machines). 
In such circuits, the elements.(relays) assume states 
which depend not only on the input variables, but also 
successively changing with them.  In this connection the 
.work of the circuit is. described, for example, by a se- 
quence of n-term sets of functions"of algebraic logic, 
i.e.', n-dimension-al vectors of Boolean algebra. With this, 
the time is represented by means of an integer parameter, 
explicitly written our or else simply appearing as the 
number of the place in a sequence of vectors.  It is this 
particular way that is being followed by several authors. 
Among such papers we mention those by V, I.Shestakov 
£~B  — 12, IA_/. 

Shestakov calls sequences of the above kind proces- 
ses and he investigates both the ways of obtaining the 
corresponding process from the equations corresponding to 
the circuit (and to the input process) (system analysis), 
as well as the reverse — obtaining the equations from .the 
process (system synthesis). . 

1. "At the end of the article in the Works of Mathematics 
Institixte imeni Steklov 51 (1958), 217 — 220. 

173 



Many authors consider the concept of operator, cor- 
responding to a given finite automaton (multiple-contact 
circuit). This is the operator which converts the input 
process, which is "given out1' by the cirtuit (output pro- 
cess). Questions on a class of all such operators were 
investigated by Yu. T... Medvedev in [_ Qj  and by B. A. 
Trakhtenbrot in £  13_7« Continuing this investigation, 
Bi A. Trakhtenbrot came to the conclusion in 1957 ' that 
it is advisable to use in these questions the formalism 
of calculus of predicates. With this, the sequence of 
n-dimensional vectors is replaced by n predicates of one 
numerical argument.  In the operators themselves (reali- 
zable in finite automata) are formulas with variable sin- 
gle-place predicates, quantors obtained from them, and 
limited quantors obtained from object (numerical) variables, 
B. A. Trakhtenbrot constructed an algorithm, which permits, 
by means of any such formula (which contains only one free 
object variable — the number of the step) to obtain equa- 
tions which describe the operators specified by this for- 
mula. 

This is essentially one of the examples of the 
broadening of algebraic logic towards the calculus of pre- 
dicates.  It is precisely here that the operations of the 
calculus of single-place predicates with quantors obtained 
from them, that is being brought into the sphere of alge- 
braic logic. Algebraization of these quantors is facili- 
tated by the fact that the problem of solvability has been 
solved for this calculus. 

This path of expanding algebraic logic is related to 
another tendency, defined not so much by the need of appli- 
cations, as by the very development of modern general al- 
gebra, particularly the theory of general algebraic sys- 
tems and in particular the theory of models. This second 
tendency consists of an algebraic approach to all concepts 
and operations of the calculus of predicates and the rela- 
ted problems, consist of algebraization of the calculus of 
predicates itself with subsequent application of the 

1. Reported at the Seminar on Mathematical Logict  Moscow 
State University, 15 May 1957. 
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resultant formalism to problems in algebra itself. This 
■^Bndency is found, for example, in many papers of A, I. 
Mal'tsev, including those which were already treated in 
Section 12 of this article. 

Conclusion 

1. As already noted in the introduction, our sur- 
vey does-not pretend to be complete. Many papers pertain- 
ing to the field of mathematical logic or its applications 
were not touched upon here. Wot always could we stop to .a 
sufficient degree on the history of the considered prob- 
lems. We left aside for the time being questions pertain- 
ing to mathematical linguistics and the associated prob- 
lems, arising in the creation of information machines or 
machines for the translation of one language into another. 
We did not treat papers devoted to philosophical problems 
of mathematical logic. We completely avoided the problems 
related with, the history of mathematical logic and mathe- 
matics. Certain of these problems we shall attempt, cur- 
sorily, to supplement in this conclusion, which is una- 
voidably therefore quite spotty. 

2. Works in the field of mathematical linguistics 
were carried out principally: 

1) • In the Division of Scientific Research of 
Applied Mathematics (OPN) of the Mathematical Institute 
imeni Steklov under the leadership of A. A. Lyapunov. Par- 
ticipating in this work were 0. S. Kulagina, I. A. Mal'chuk, 
and I. N. Moloshnaya, who developed algorithms for trans- 
lation from French into English and many theoretical prob- 
lems connected -with their compilation. 

2) At the Seminar on Mathematical Linguistics of 
the Moscow State University, under the leadership of V. V. 
Ivanov, P. S. Kuznetsov, and V. A. Uspenskiy. Papers were 
delivered at the seminar also by R. L, Dobrushin, T.  N. 
Moloshnaya, I. A. Mel'chuk, 0, S. Kulagina, I. I. Revzin, 
V. A. Purto, and S. K. Shaumian. 

■3) In the joint group on machine translation of 
the First State Pedagogical Institute for Foreign Languages 
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under the leadership of 7. Yu. Rozentsveyg and I. I. Revzin. 
The joint group began to publish a "bulletin«  (seven is- 
sues were published),' in whioh are printed stenograph!o 
reports of the sessions, and also articles and communica- . 
tions on mathematical linguistics« 

4)  Problems of machine translation are being deve- 
loped in the Institute of Precision Mechanics and Computa- 
tional Technology of the USSR Academy of Sciences and in 
the Laboratory of Electric Simulations of the All-^Union 
Institute of Scientific and Technical Information. 

"'■ 5) Since 1956, the Leningrad University has had in 
operation an all-university seminar on the theory- of ma- 
chine translation under the leadership' of N. U. Andreyev. 
Participating in it were staff members of the Mathematical- 
Mechanical, Philological and Eastern faculties. The semi- 
nar 'engaged in researches both on the general'theory of 
machine translation and on the compilation of particular 
algorithms. 

One of the first to engage in mathematical linguis- 
tics in the USSR was A. N. Kolmogorov, who already in the 
twenties formulated a definition of the case as a class of 
logical relations that2are equivalent to each other 
(in a definite sense). 

'G. S. Kulagina (a student of A. A. Lyapunov) formu- 
lated /\_/ the principal premises of set-theoretical con- 
cepts of language, which served as .the basis "for further 
work in this field. 

The concept of 0. S. Kulagina is found to be parti- 
cularly useful in the study of so-called simple languages, 
which represent, however, only a simplified model of real 
languages. 

Certain definitions, pertaining to the study of 

T. Note"added in proof,  In March 1958 there was organized 
at the Leningrad University.an experimental laboratory for 
machine translation, where these researches are being ■ 
carried out. • 
2.  See ]^lJ]^^of^oJLjiX.^ l^anslation, 
No. 5, Article by V. ATUspenskiy /l5, .16_/ and R. L. 
Lobrushin / 16_7» 
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non-simple languages, were given by V.- A. Uspenskiy and ■ 
R» L. Dobrushin. 

The abstract model, introduced "by 0. S. Kulagina for 
the purpose of formalization of certain grammatical cate- 
gories, was found to be, as frequently happens in mathema- 
tics, applicable in a broader sense than was originally ^ 
thought; äs noted by V. Y. Ivanov, certain aspects of this 
model can be :used for the construction of the theory of. 
meaning of linguistic expressions; V. A, Uspenskiy made'■ 
analogous remarks on the use of the constructions of 0. S. . 
Kulagina in phonology, .. 

Significant for further research was the concept, 
introduced by 0. S. Kulagina, of the configuration (which 
in some sense is the refinement of the concept of -»word 
combination"). Roughly speaking, a configuration is such 
a finite sequence of elements, which, without disturbing 
the understandability, can be replaced by a single element 
(resultant). With such a replacement (''abbreviation1') the 
length of the phrase is naturally reduced. In order to 
establish a definite sequence of abbreviations, which must 
be carried out in a phrase, the configurations are classi- 
fied by ranks,      . .   _ 

I. I. ReYzin / 2, "bj  applied the theory of configu- 
rations to the formalization and refinement of several con- 
cepts of traditional syntax; it was found here that in the 
construction of a syntax in terms of configurations it is 
impossible to bring into consideration such phrases as 
"it freezes1' (so-called "impersonal" clauses) in general 
any single-element clauses. 

3.  In connection with the problem of constructing 
information machines . (for such sciences, for example, as 
chemistry, where the volume of information is particularly 
large) ,' capable not only of storing and issuing information, 
but also by logically processing the information, the crea- 
tion of an artificial "machine language" becomes quite ur- 
gent.  We speak here of the construction of a formalized 
language with an exact indication of its contentful inter- 
pretation and constructive definition of intelligence (and 
not only regular construction) of the phrases of this 
language. The principles of such a language — algorithms 
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of definition of intelligence of its phrases for the sim- 
plification of a particular branch of chemistry (synthetic 
organic chemistry) have been constructed by V.K. Finn 
together with D. G. Lakhuti and G. E. Vleduts. L. G. ' 
Lakhuti' and V. K. Finn, on the basis of these works, attempt 
to formulate the principle of constructive logical semantics. 
- ■■■■'   4. Researches connected with mathematical logic jtn 
the field of general logic were the subject of papers deli- 
vered at the Seminar on logic at the Institute of Philoso- 
phy Academy of Sciences, USSR. Inasmuch as the papers.of 
A. A. Zinov'yev  contain detailed information on the work 
of this seminar, we permit ourselves to" note here only that 
the'seminar paid great attention to problems of logical ana- 
lysis of knov/ledge of connections (works of A. A. Zinov'yev, 
V. EV Finn, and D.' G. Lakhuti) and is different from the 
simpler knowledge of relations. 

Concerning various views on modern mathematical logic, 
a paper was delivered by S. A. Yanovskaya (20 December 1956) 
on philosophical readings, at the Institute of Philosophy 
Academy of Sciences USSR, the contents of which is reported 
in the note by V.  G. Lakhuti /_ ij  and N. I,  Styazhin £ 1J* 

Problems of philosophical character, pertaining to 
mathematical logic, were dealt with also by the students of 
S. A. Yanovskaya; 1. V. Biryukov, A,_D. Getmanov, B. Yu. 
Pil'chak C*J  andffv I. Styazhkin / i» 2> '3-A ■ The remarks 
of N. I. Styazhkin / 2, 3_/ are devoted to an interpretation 
of logical antinomies, as evidencing the invalidity of cer- 
tain idealizing assumptions (for example, the fact that 
objects of a considered object region represent absolutely 
solid unchangeable bodies, retaining their individuality as 
they are included in any set of objects).  Emphasizing 
that "dialectical materialism requires resolution and not 
fetishization of contradictions" and that "dialectical con- 
tradiction has- nothing in common with formal-logical con- 
tradiction, i.e., contradiction of such a kind, for example, 

iA SeTThTpaper by A. A_^ Zinov'yev in "Voprosy filosofii1' 
/ Problems of Philosophy /, 2, (1958). 
2.  See A. A. Zinov'yev Z"1-/? see al00 his paper in 
"Voprosy filosofii», 2 (1958). . 
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as a quantity which is both zero and not zero simultaneously 
and in other words, quietly hearing with such a delicate 
situation" (Z\/J P« 92) Styazhkin notes the following. 
Styazhkin notes that the resolution of the antinomy is 
attained not hy a simple foregoing of coarsening proposi- 
tions» hut the refinement of such, based on dialectical- 
materialistic principle of concreteness of truth. The hew 
ööhtradictions that arrive thereby are resolved in turn  ; 
with the'aid of further refinement, and thus, the problem 
of formalization of any contentful theory leads to the need 
for considering this theory in its variation and development, 
ie.e, from the point of view of the dialectical logic. 

Devoted to a criticism of the attempt of logicism 
(Russell and his followers) to reduce mathematics to logic 
is an article by A, D. Getmanova.  The success of the logi- 
cal-mathematical calculus constructed by Russell and White- 
head in Principia Mathematica is particularly instructive 
from the point of view of dialectical materialism, because 
it was indeed with the aid of Principia Mathematica that 
further development of science has proved the unrealizability 
of the premises of Russell that mathematics can be reduced 
to logic. Actually, while the purely logical part of sys- 
tems of the type of x^rincipia Mathematica (the KQ calculus 
of D. A. Bochvar) is reducible to the narrow calculus of 
predicates (with equality), for which the Goedel theorem 
on completeness is true, the entire system as a whole (in- 
cluding the arithmetic of natural numbers with recursive 
functions) is known to be incomplete (and incompletable) 
(the Goedel theorem on incompleteness).  In other words, 
while logical constants (negation '''no," conjunctions 
"and," "or," "if...then," quantors "all" and "exists," and 
the identity relation) are uniquely defined (in models) 
by axioms and rules of the purely logical part of calculi 
of the Principia Mathematica type, it follows from the 
Goedel theorem on incompleteness that it is impossible to 
define uniquely arithmetic terms by means of. logic even 
through the mathematization of the latter, realized in fact 
by Russell and Whitehead. 

B. V. Biryukov dealt with the clarification of the 
logical-mathematical work of G. Prege (particularly his 
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theory, of sense and meaning, and also his fight against • 
subjectivism in logic). 

5, " Certain problems of the history of the creation 
and. development of matheraatical logic have been the topic 
of communications:and papers by _Gr. Ruzavin and N-. I. 
Styazhkin, N. I. Styazhkin /. \J  engaged particularly ' 
with the history, of mathematical logic in pre-revolution- 
ary Russia (P. S. Poretskiy, S. 0. Shatunovskiy, I. V. . ;^:. 
Sleshinskiy, "Ye. L. Bunitskiy," N.-A. Vasil'yev, M. S. ■ -y.r, 
Volkov, N. N. Parfent'yev, and others), the semantic para-- 
doxes among the middle age scholasticists, and an analy- 
sis of Boole's logical ideas. It was found in particular 
that although the algebraic logic constructed by Boole 
actually was closer to a Boolean ring than to a Boolean 
algebra, it nevertheless is neither one directly, but the 
secret of the success of the methods used by Boole himself 
requires explanation (which is indeed noted by N. I. 
Styazhkin.) . 

With respect to the semantic paradox of the type 
"liar".(for example something like the following;  in a 
volume are', written only two propositions p1 and v^,     $^  is 
a..fixed true statement, and p says "only px is true"'; 
it is required to determine whether p2 is true or is it 
false), considered by Albert of Saxony and John Buridan 
(16th century), an interesting observations is made by 
N. I. Styazhkin on how Buridan eliminates paradoxes by 
using the so-called ''paradoxical consequences," (which are 
obtained, for example, by adding auxiliary premises of the 
type "Socrates said" and the interpretation of a paradox 
as denoting merely that Socrates could not have- said such 
a phrase). 

6. General problems of axiomatics and its history 
were treated by Yu. A. Rozhanskaya and S. A. Yanovskaya. 

In note {_ ±5_J  (1953), Yu. A. Rozhanskaya, leaning^ 
on concepts she introduces, those of x-equivalence (certain 
generalized quantor concepts of similarity of two sets) 
and x-type, proves (purely^set-theoretically) the equiva- 
lence of the following two definitions of completeness of 
the systems 

(A) A system of axioms is complete if one cannot 
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add to it a single axiom, expressed in terms of the same 
relations, without stopping it either from "being compatible 
or from being independent. 

(B) A system of axioms is complete, if any two,of 
its interpretations are isömor'phic. 

Devoted to the question of the history of axioma- 
tics Was a paper by S* A. Yanovskaya at the Third All-union 
Mathematical Congress / 29_/.  The paper considers the"",,.. 
question of why geometry, even in Euclid's time, was cons- 
tructed axiomatically, whereas an axiomatic construction 
of the'arithmetic came into practical use only from the 
time of Peano (i.e., the end of the 19th century).  The 
hypothesis proposed by Yanovskaya as an answer to this 
question consists, roughly speaking *, of the following. 
The discovery of the irrationality was not the consequence 
of axiomatic construction of geometry, but to the contrary, 
it preceded the latter.  The basis of this discovery lies 
in the Pythagorean theorem, empirically observed by operat- 
ing with a compass and rule, and in the assumption, based 
on the idealization of the same operation, of the existence 
of an ideally exact square. However, this discovery invi- 
ted the conclusion that the geometric problems can best be 
solved not by calculation, but by construction.  The point 
is that, just like arithmetic, geometry was needed above 
all as a set of instructions for action, as an operator 
science, which has constructively developed general methods 
(algorithms) of solving entire classes of homogeneous geo- 
metrical problems (or the "mass problem" corresponding to 
each such class: such ast for example, "divide (an arbi- 
trary!) segment in two1').  But unlike the algorithms of 
arithmetic, where one always proposes a potential realiza- 
bility of any natural number, algorithms that solve the 

1.  Por a detailed report see Istoriko-matematicheskiye 
issledovaniya / Historical-mathematical Researches^/, XI. 
The motivation of this hypothesis required the use of so 
much historical-mathematical and historical-philosophical 
material, that the author had to forego the clarification 
of other questions indicated in ^ 29_/» 
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mass construction problems depend specifically on the 
instruments that can actually Toe used. 

The problem of solving a problem of construction 
cannot even be formulated, if one does not.agree before- 
hand what instruments can be used: what operations are 
proposed to be directly realizable, although in practice, 
possibly, they are not always such. Solution of the prob- 
lem consists thus of reducing it to problems that are...,.,,_. 
assumed to be solved, and the algorithm, which solves .the 
mass geometric problem by construction is already, unlike 
the algorithms of the arithmetic of natural numbers, a 
reducibility algorithm. The postulates of Euclid indeed 
formulate exactly the problems that are assumed by him to 
be already solved.1*  In particular, the fifth postulate 
discusses when one can consider the problem of finding the 
point of intersection between two lines solved. Euclid 
did not accidentally formulate this postulate in such a way, 
that the criterion that recognizes whether the problem of 
finding the point of intersection of two given (arbitrary!) 
straight lines is solvable has in a certain sense the 
following effective character:  recognize whether the con- 
dition of this criterion (pertaining to a sum of certain 
two angles) is satisfied, possibly by means of simple cons- 
tructions with a compass and rule in a limited portion of 
'a plane.' . . 

But after the postulates were already formulated, 
and thus in such a way that one should have begun the 
exposition of geometry from them,, the conversion of the 
latter into a deductive axiomatic theory could become and 
did become a natural successive stage in the history of 
geometry. 

The development of geometry as a deductive science, 
unlike arithmetic which remains essentially an operative 

1.  It goes~without saying that the problems considered 
solved were not arbitrary, but only those which persons 
frequently encountered in practice and for the-solution 
of which (in ordinary cases) correspondingly instruments 
were already available. 
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science, * was thus due to the peculiar operative character 
of geometry; to the circumstance that the algorithms of 
the "principles51 of Euclid: are not absolute, but reducibi- 
lity algorithms. 

The difficult problems connected with the axiomatic 
theories, such as the question of methods of recognition 
of derivability or non-derivabiiity of anything in such a 
theory, requires for its' solutioh-the development of a 
general theory of algorithms. But even problems in the 
history of axiomatics are made clearer to some extent in 
the light of the theory of algorithms. 

1. In the "Principles" arithmetic is included in geometry, 
since arithmetic operations are realizable with a compass 
and rule. However, as shown by I. G-. Bashmakova / 1_/} 
the arithmetic of abstract numbers is proposed by Euclid 
in his construction of the theory of measure-numbers, which 
are constructed with a compass and rule. 

183 



Eibliography 

Adyan, Sergey Ivanovich 
1. Algorithmic Unsolvability of Problems of Recognition of 
Certain Properties of Groups, "Doklady Aka. Nauk SSR 
[Trans. Acad. Sei* USSR] 10}, (1955), 533-555. 
2. Problem of Divisibility in Semigroups, "Doklady Akad. 
Nauk SSSR, 103, (1955 ), 7^7-750 • ■'-"> 
5. Finite-Definite Groups and Algorithms, "Uspekhi 
Matematicheskikh Nauk, UMN [Progress in Mathematical 
Sciences] 12:3 (75), .(1957), 248-249. 
6. Role of Reduction Law in Specifying Semigroups, with 
Reduction by means of Defining Relations. "Doklady Akad. 
Naus SSSR, 113, (1957), 1191-119^- 

Arin', Eyzhen Indrikovich 
3. On One Generalization of the Baire Theorem. "Uspekhi 
Mat. Nauk," 8:3 (55) (1953), 105-108 

Arsenin, Vasiliy Yakovlevich 
4. Theory of A sets,   "Uspekhi Nauk" 5:5  (39),   (1950), 
45-108  (with A. A. Lyapunov) 

Bashmakova, Izabella Grigor'yevna 
1. Arithmetic Books, The Euclid "Principles." Ist.-matem. 
issledovaniya [Historical-Mathematical Investigations], 
1 (1948), 296-520. 

Bochvar, Dmitriy Anatolevicli 
4. Concerning the Problem of Paradoxes of iSathematical 
Logic and Set Theory. Matematicheskiy sboniik [Mathematics 
Collection] 15(57) (19^), 369-384 
6. On the Problem of Paradoxes and on the Problem of 
Broadened Calculus of Predicates, ibid. 43(84), (1957) 
3-10. 

Chegis I. A. 
1. On Tests for Electric Circuits, Uspekhi Matematiches 
Nauk 10:4 (66(  (1956), 182-184. (Together with S. V. 
Yablonskiy). 

Detlovs, Vilnis Karlovich 
1. Normal Algorithms and Recursive Functions. Dokl. Akad. 
Nauk SSSR 90(1953), 723-725. 

Finikov Boris Ivanovich 
1. On One Family of Classes of Functions of Algebraic Logic 
and Their Realization in the Class of «-Networks. Doklady 
Akad. Nauk SSSR 115(1957), 247-248 

Glivenko, Valeriy Ivanovich 
4. Sur la logique de M. Brouwer, Bull. Acad. Sei de Belgique 
(5), 14 (1928), 48o-^83. 
5. Sur quelques points de la logique de M. Brouwer, Bull. 
Acad. Sei. de Belgique (5), 15 (1929), I83-I88. 

184 



Kolmogorov, Audrey Nikolayevich 
8. On the Excluded Third Erinciple, Matematicheskiy Sbornik, 

32 (1925), 6^6-667 
3^i Zur Deutung der Intuitionistischen Logik, Math. Z. 
35(1932) 58-65 
135, On the Concept of the Algorithm. Uspe'fchi Matematicheskikli 
Nauk 8:1* (56) (1955), 1T5-176 

KorobkoV, V. K. 
1. Realization of Symmetric Functions in a Class of *- 
Networks. Doklady Ai&cL. Nauk SSSR, 109 (1956)/ 260-263. 

Kbzlova, Zoyä Ivanova    :' 
li Oh the Question of Approximate Solution of Partial 
Differential Equations with the Aid of Electric Models. 
Avtomatika 1 Telemekhanika [Automation and Remote Control] 
17 (1956), 89O-896 (with N. S. Nikolayev) 
1. On Multiple Seisarability, Doklady Akad. Nauk SSSR, 27 
(19^0), 108-111 
2. On Certain Classes of A and B Sets. Izvestiya Akad< Nauk 
SSSR Ser. Mat. k  (19*K)), ^79-500„ 
3. Principal Theorems of Multiple Separability. Stalin- 
grad, Uchen. zap« Ped. in-ta [Stalingrad, Scientific Notes 
of Pedagogical Institute] 1 (19^8), I56-I68. 
5, On Coverings of Certain A Sets. Izvestiya Akad. Nauk SSSR, 
ser. Mat» 1^ (1950), k21-kk2. 
6. Coverings of A Sets and Splittings of B Sets. Uspekhi 
Matematicheskikh Haul: 5i'3 (37) (1950) 13O-I31 
8. Interrelationships Between Theorems of Multiple 
Separability. Izvestiya Akad. Nauk SSSR, ser. Mat. 16 
(1952), 389-^ 
9. Interdependence of Theorems of Multiple Separability. 
Stalingrad, Uchen. zap. Ped. in-ta 3(1953), 17-^1 
11. On the Covering of Sets, Izvestiya Akad. Nauk SSSR, 
ser. mat. 19 (1955). 125-132. 
Ik,  On the Covering of Sets, II, II. Izvestiya Akad. Nauk 
SSSR, ser. mat. 21 (1957)/3^9-370 

Kreynin, Yakov Lazarevieh 
1. On Sets That Are Effectively Different from All f-Sets. 
Matematicheskiy sobrnik 38(80) (1956), 129-lW 

Kulagina, 01'ga Sergeyevna 
k.  Concerning One iiethod of Determining Linguistic Concepts. 
Byulli ob"yedineniya po problemam mash, peravoda [Bulletin 
of Joint Group on Problems of Machine Translation] 3 (1957) 
1-17 

Kutnetsov, Aleksandr Vladimirovich 
1. On Primitive Recursive Functions of Large Spread. 
Doklady Akad. Nauk SSSR 71 (1950), 233-236     , 
2. Investigation of Partially-Recursive Operators by Means of 

185 



Theory of Baire Space, Doklady Akad. Nauk 33SR;.-1Q5 (1955), 
897-900 (With B. A. Trakhtenbrot). 
3. On Problems of Identity and Functional Completeness for 
Algebraic Systems. Trudy 3-go Vsesoyuzno-o i.Jatem.; S'yozda 
Vil. II, Moscow (19J5)S  145-146 
4« Certain Problems of Mathematical. Theory of Contact 
Circuits. Topics of Papers Held at the Ail-Union Conference 
on Theory of Relay Devices in Moscow. Moscow (1957),40-4l. 
5, Completeness of a System of Axioms of Arithmetic with a 

'Rule for Constructive-Infinite Induction. Uspekhi Matema- , 
ticheskikh Nauk 12:4 (76) (1957), 218-219. 

Lakhuti, Delir Gasemovich 
1, On Different Views Concerning Modern Mathematical-;! 

'Logic. Voprosy Filozofii,' 3 (1957), 208-211 (together with 
N. I. Styazhkin) 

Lunts; Aleksandr Grigorovich 
1« Application of.Matrix Boolean Algebra to the Analysis 
arid "Synthesis ' of Relay-Contact 'Networks'.. Doklady Akad. 
Nauk.SSSR.70 (1950), 421-423 .    .,...'■     ...,,• 

.' 3.. Reduction of a Mati-ix 'to the Jordan Normal Form.. ■ 
' Leningrad, Üehen. zap un-ta, l44, ser. matem.,[Leningrad, 

Scientific 'Notes of the University, l44, Mathematics 
Series] 23 (1952)7 35-46 . ..,'. 
4, Algebraic Methods of Analysis and Synthesis of Contact 
Networks. "' Izvestiya Akad. Nauk.SSSR, ser. mat. l6 .(1952) 
405-426 

Lupanov, Oleg Borisovich 
1. Possibility of Synthesis of Networks of .Different 
Elements.. Doklady Akad. Nauk SSSR, 10j3 -(1955),. 5'6l-5.63 ' 
3. On the Possibility of Network Synthesis with Arbitrary 
Elements, Trudy 3-go Vsesoyuznogo Matem..S!lye2;da/ Vol. II, 
Moscow (1956), 146. 

Luzin,. Nikolay Nikolayevich 
90." Lektsii ob analiticheskikh mnozhestvakh i ikh ■ 
prilozheniyakh [Lectures on Analytic Sets and Their Appli- 
cation] Moscow (1953), 1--360 

Lyapunov, Aleksey Andreyevich '  ' • 
17. On R Sets, Doklady Akad. Nauk S33R; 5-C (1947),: I887-I89O 
19. Theory of R Sets. Us-oekhi Matematicheskikh Nauk, 2:3 

: (19) (1947)/ 191 Plus 
. 24. New Definition of Certain Classes of Sets. Doklady Akad. 
Nauk SSSR 59 (1940), 847-848 
26. On the Effective lleasurability Izvestiya Akad.- Nauk 
SSSR,.13 (1949), 357-362 
27. On Ss-eperations that. Retain Measurab^lity and the 
Baire Property . Matematicheskiy Sbornik 24 (66)  (1949), 

: 'II9-I27 

186 



28. On Set-Theoretical Operations that Retain Measurability, 
Doklady Akad. Nauk SSSR 65 (19^9), 609-612 "•:..'■ 
29. On Operations That Lead to Measurable Sets, Uspekhi 
Matematicheskikh Nauk \:$  (31) (19^9), 125 plus ' ■■' 
32. Theory of A Sets, Uspekhi Matematicheskikh Nauk 5:5 
(39), (1950) , ^5-100 (together -with V.Ya. Arsenin) 
33. B-Functions, Us-oekhi Matematicheskikh Nauk 5:5 
(39) (1950), IO9-II9 
36. On Degeneracy Properties for R Sets Izvestiya Akad. 
Nauk SSSR, 'set* Mat<: 1? (1953); 563-578 
37. On Classifications of R-Sets, Matematicheskiy Sbornik 
32 (Ik)  (1953), 255-252 ■:■"'.', 
38. Separability and Inseparability of R Sets, Matematicheskiy 
sbornik, 32 (71:) (1953), 515-532 
39. R Sets, Trudy ilatem. in-ta AN [Works of the Mathematics 
Institute of the Academy of Sciences] kO  (1953), 1-68 
kk.  On Operations on Sets, Admitting of Transfinite Indices, 
Trudy 3-go Vsesoyuznogo Matem. S"yezda, Vol. II, Moscow 
(1956), .12^-125 
45*. On the E:roansio:i: Of Set-Theoretical Operations, 
Uspekhi Materaätichcr,kil:h Nauk,. 11:5 (71) (l95o), 237 
k6.  On Operations on Sets, Admitting of Transfinite Indices, 

...Uspekhi Matematicheskikh Näuk, 11:1 (67) (1956), 2k5-2kk. 
51. On Operations on Sets, Admitting of Transfinite 
Indices, Moscow, Trudy Matem. o-va [Works of the Mathem, 
Society], 6 (1957), 195-230 

Mal'tsev, Anatoli Tvanovich 
. 1. Untersuchungen aus dem Gebiete der mathematischen Logik 
Matematicheskiy Sbornik 1 (^3) (1936), 323-326 
7. Concerning One General Method of Obtaining Local Theorems 
in Group Theory. Ivanovo, Uchen, zap. Red. in-ta, fiz.-mat. 
fafc-t [Ivanovo, Scientific Notes of the Pedagogical Institute 
Physical-Mathematical'Faculty] 1:1 (19^-1), 3-9 
32. Concerning Pre-Ordered Groups. Trudy. Matem. in-ta AN 
.38 (1951), 173-175 

., k-2.  Two Remarks on Nilpotent Groups, Matematicheskiy Sbornik 
37 (79) (1955), 567-572   
if5. Quasi-Primitive Classes of Abstract Algebras, Doklady 
Akad. Nauk SSSR 103 (1956), 187-189 
kk.  On the Representation of Models, Doklady Akad. Nauk SSSR 
108 (1956), 27-29 
lj-6. Sub-Straight Products of Models Doklady Akad. Nauk SSSR 
109 (1956), 26V266 
51. On Derivative Operations and Predicates. Doklady Akad. 
Nauk SSSR II6 (1957)/ 2^-27 
52. On Classes Of Models with Operation of Generation 

. 'Doklady Akad. Nauk SSSR 116 (1957), 733-71!-!      ' ' 

187 



Markov/ Andrey Andreyevieh 
30. Impossibility of Certain Algorithms, in the Theory'of 
Associative Systems. Doklady Akad. .Hauls .BSSBC55 1XSM)7 
587-590 .■■■.,.:.  .■■/■... ,, :;'•       -;.",:;'"' 
36. On Representation of Recursive Functions. Doklady 
Akad. Nauk SSSR 5o (19^7), I89I-I892  ■ 
37» On the ■Dependence- of the Axiom.B6'.on'..Other Axioms of. 
the Be mays -Goe del System. Izvestiya Akad;. Naük SSSR, 
ser. Mat. 12 (194C), 5^9-570 ;. '"....' 
39. On Representation of Recursive Functions. Izvestiya 

•Akad. Nauk SSSR, ser. mat. 13 (19^9), fH7J&k  " 
kO,  Constructive Logic, Uspekhi Matematicheakikh Nauk 
5:5 (57) -(1950), 187-188 ;;   .' :■: 
kli    Theory of Algorithms. , Trudy oaten8 in-ta.AN,. 38, 

;;1951> 176-189 ■■■ - 
43.' Impossibility of Algorithms of-Recognition of Certain 
Properties of Associative Systems. Doklady Akad. Nauk SSSR 
77(1951), 953-956 
kh.  On Certain Unsolvable Problems Concerning Matrices. 
I)oklaä^ Akad. Nauli SSSR 78 (1951)7 IO89-IO92 
k6.  On Unsolvable Algorithmic problems, Matematicheskiy1 . 
Sbornik, 51 (73) (1952), 3k-h2 ' 
48. Theory of Algorithms.- Trudy■■ Matem, in-ta.AN, 42 (1954), 
1-376- :.."'' ■/ 
kS.  On the Continuity of Constructive Functions. Uspekhi 
Matematicheskikh Naul: 9:3 (61) (1954), 226-230 
51. On One Principal"of Constructive Mathematical Logic 
Trudy 3-go Vsesoyuznogo matem. s"yezda; Vol. II,i Moscow 
(1956), 146-147 :'.     V 
53. Inversion Complexity of Systems of Functions Doklady 
Akad. Nauk SSSR, Ho (1957), 917-919 

Matskina, Roza Yudovria 
1. On Continuous Mappings of Hilbert Space/.Uspekhi 

• Matematicheslcildi Naulc 4:5 (33) (19^9), 179 
2. On the Complete Universality of the Space of Irrational 
Numbers. M./Uchen. sap. Obi. ped. in~ta, 15; Trudy kafedry 
fi.-mat. fak-ta [Moscot/, Scientific Notes of the Oblast 
Pedagogical Institute, 15; Works of the Chair of the : 

Physical-Mathematical Faculty] 1 (1950), 137~l40 
3. On Continuous lucres of Hilbert Space, Izvestiya Akad. 
Nauk SSSR, ser. Mat. 15 (1951), 95-102 . '; 

■ 4. Universal Continuous Mapping-of Hilbert Space, Izvestiya 
Akad. Nauk SSSR ser. nat. 15 (1951)> 533-544 
5. Ori Mutually-Unique. Continuous: Images of Hilbert Space. 
Izvesitya Akad; Nauk SSSR ser.. Mat. (1955) 267-272 
6. Universal Continuous Mapping of Baire Space on Itself. 
Glazov, Uchen. zap. Ped. in-ta [Glazov, Scientific Notes of 

188 



the Pedagogical Institute], 3 (1956), 100-107 
7. Continuous Mappings of Hubert Space. Trudy 3-go 
Vsesoyuznogo matem. s"yezda, Vol. tl, Moscow (1956)> 135 

Medvedev Yuriy Tikhonovich 
1*. On Noh-Isomorphic Recursive Denuraerable Sets, Doklady 
Akad. Nauk SSSR 102 (1955);. 211-211* 
5. Degrees of Diffuculty of Mass Problems. Doklady Akad. 
Nauk SSSR ibi (1955)> 501-501* &/ 
6. On the Concept of the Mass ■Problem and Its Applications 
in the Theory of Recursive .Functions and Mathematical Logic 
Trudy 3-go VsesoyuznogoMatem. S'yezda, Vol. I, Moscow 
(1956)/ 183 
8. On Classes of Events, that Admit of•Representation in a 
Finite Automation. In Collection "Avtomaty" [Automata] 
(Appendix 2) Moscow. (1956). 

Muchnik, Al"bert Abramovieh ."..,• 
1. Unsolvability of the Problem of Reducibility of the Theory 

. of Algorithms. Doklady Akad. Nauk SSSR 10Ö (1956) 19**-197 
2. On the Separability of Recursive-Denumerable Sets. 
Doklady Akad. Waul: 333R 109 (1956), 29-32 
3. Solution of the Post Convergence Problem. Trudy 3-go 
Vsesoyuznogo matem. s"yezda,- Vol. I, Moscow (1956), iBh 

Nagornyy, Nikolay Makarovich 
1.' On the Reinforcement of the Reduction of the Iheory 
of Algorithms. Doklady Akad.. Nauk SSSR 90 (1953) -Okl-jte 
2. On Certain Generalizations of the Concept of Normal 
Algorithm, Trudy 3-go Vsesoyuznogo matem. s'yezda, Vol. II 
(Moscow) (1956), ll*7 
3. On the Minimum Alphabet of Algorithms on a Given Alphabet. 
Trudy matem. in-ta All, 52 (1957) 
k.  Certain Generalizations of the Concept of Normal Algorithm. 

. Trudy matem. in-ta AN 52 (1957) 
Nivikov, Petr Sergeyevich 

8. Sur la separabilite des ensembles projectifs du seconde 
classe. Fund. Math 25 (1935) 1*59-1*66 
10. On the Mutual Relationship of Second Class Protective Sets 
and Projections of Uniform Analytic Complements. Izvestiya 
Akad. Nauk SSSR, ser. mat. (1937) 231-252 
17. On the Consistency of Certain Logical Calculus. 
Matematicheskiy sbornik 12 (5k) (1943)231-261 
18. On Logical Paradoxes. Doklady Akad. Nauk SSSR 56 (19^7); 
1*51-1*53 
25. On the Non-Contradiction of Certain Premises of Descriptive 
Theory of Sets. Trudy matem. in-ta AN, 3G (l95l)> 279-3Ö0 
27, On the Algoritlimic Inseparability of the Identity Problem, 
Doklady Akad. ilaiü: 333R 85 (1952)/709-712 
29. The Unsolvability of the Problem of Conjugation in the 

189 



Theory of Group. Iavostiya Akad. Nauk SSSR ser. mat. l8 
(I95I+), 1^85-52^      ... 
50. On the Algorithmic Unsolvability of the Problem of 
Identity of Sforda in Group Theory. Trudy matom. in-ta AN, 

bh>  (1955) 1-^^- 
Ochan', Yuriy. Seraenovich • 

13. Theory of Operations on Sets.Üspekhi Matematicheskikh 
Nauk lo:3 (65) (1955), 71-128 '  .    .;:,-, 

Pil'chak, B. Yu. ;v v 
2* -On-the Role of the Law of Excluded Third.in Mathematics. 
Novozybkov, Uchep. zgp. Pea. in-ta, [Novozybkov, Scientific 
Notes .of the Pedagogical Institute] 1 (1952), 115-131 
3. On the Calculus of Problems UMZh [Ukrainian Mathematical 
Journal] 2~ (1952), r(k-19k       ■' 

Povarov, Gelliy Nikolayevich 
1. On the Functional Separability of Boolean Functions« 
Doklady Akad. Nauk SSSR $k (195^),  8OI-803 
3. Matrix Methods of the Analysis of Relay Contact Circuits 
from the Conditions of Non-Dperation. Avtomatika i 
telemekhanika 15 (I95]0, 332-335 , .■' 
4. Mathematical Theory of-the Synthesis of (l,k)-Pole Net- 
works. Doklady Akad. Nauk SSSR 100 (1955)/ 909-912; 
102 (1955), 196 

,,5. Oh the Study of Symmetrical Boolean Functions from the 
Point of View of the Theory'of Relay Contact. Networks. 

■   Doklady Akad. Nauk SSSR 104 (1955), I83-I85 
6. On a Procedure for the Analysis of Symmetrical Contact 

.. -; . ..Networks. Avtomatika ,i telemekhanika. 16 (1955)> 3^-306 
10. On Certain Matrix Methods, of the Analysis'of Relay~ 

. Contact Netwoi-ks,. Sb.poavtomatike i teleme'khanike 
[Collection on Automatics and Telemechanics] Moscow 

(1956), 278-285 ■',"'.. , „ .„ 
.•• ll. Concerning the Structural Design of Symmetrical Contact 

Networks. Avtomatika [Automation] k  (1956), ^8-53. 
■■■■lk.  On Matrix .-Analysis of Connections in. Partially-Oriented 
.Graphs. . Uspekhi iiatamaticheskikh Nauk 11:5. (73-0 (195Ö), 
195-202 

Revzin, I. I. 
1. Certain Linguistic Problems of Machine Translation. 

■'. Voprosy Yazykoznaniye,[Problems of Linguistics] 1 (1957) 
(together with Moloshnaya, Lurks, and Rozentsvoyg) 

■•2. Certain Problems of Formal!zation of Syntasis, Byull. 
Ob"yedineniya po problemam mash, perevoda 1 (1957) >. 5"3^> 
3 (1957), 20-29 

Roginskiy, Vadim Nikolayevich 
..:•!. Calculation of the Unused States in the Synthesis of Relay- 

Contact Networks. Avtomatika i telemekhanika 15 (195*4-), 206-222 

190 



Rozhanskaya, Yuliya Antonovna 
15. On the Equivalence of Two Definitions of Completeness 
of the System of Axioms of A. Nt Kblmogorov and H. Weyl 
M. Uchen. zap. un~ta, Vyp. l8l, Matematika [Moscow, 
Scientific Notes of the University, Wo. l8l; Mathematics], 

■    8 (1956), 197-198      . 
Shanin, Nikolay Aleksandrovich 

11, On Certain Operations on Logical-Arithmetic Formulas 
Doklady Akad, Nauk SSSR 93 (1953), 779-782 
12, Oh Submersion of the Classical Logical^-Arithmetical 
Calculus in Constructive Logical-Arithmetic Calculus..' 
Doklady Aliadi Nauk SSSR Qk (1954)>  193-196      , ;,.-. 
13, On Certain Logical Problems of Arithmetic. Trudy matem. 
in-ta AN/ k3>  (1955), 1-112 
Ik.  Certain Problems of Mathematical Analysis in Light of 
Constructive Logic. Z. fur math» Logik and Gruudloger der 
Matheiaakh, 2 (1956)/ 27-36 . 
15* On Constructive Concept of Mathematical Judgment. 
Trudy 3-go Vsesoyuznogo' matern. s"yezda. Vol. I, Moscow 
(1956) I89-I90 
16. On Constructive Mathematical Analysis, ibid. Vol. II, 
Moscow (1956), 69-71 

Shestakov Viktor Ivanovich 
8. On the Transfor.jation of Monocyclic Sequences into 
Reverse Ones. Doklady Akad. Nauk S33R 90 (195*0, 5^1-5^ 
9. Algebraic Method of Synthesis of Multiple-Step Relay 
Systems. Doklady-Akad.'Nauk SSSR 99 (1951!-), 907-990 
10. Algebraic Method of the Analysis of Autonomous Systems 
of Two-Position Relays. Avtomatika and telemekhanika 15 
(1954), 107-128 
11. Algebraic Method of Synthesis of Autonomous Systems of 
Two-Position Relays, ibid. 15 (195'+), 310-324 
12. Vector-Algebraic Method of Analysis and Synthesis of 
Multi-Step Relay Systems. Trudy 3-go Vse'soyuznog matem. 
s'Vezda, Vol. I, Moscown(l956), 19O-I9I. 
13. Algebraic Method of Synthesis of Multi-Beat Systems of 
r-Position Relays. Doklady Akad. Nauk SSSR 112 (1957),  62-65 

Shchegol'kov, Yevgeniy Alekseyevich 
2, Elements of the Theory of B Sets. Uspekhi Matematicheskikh 
Nauk 5:5 (39) (1950), 14-44 

Shura-Bura, Milchail Romanovich 
2. Elements of the Theory of B Sets, üspekhi Matematicheskikh 
Nauk 5:5 (39) (1950) 14-44 

Sodnomov, Bazar Sodnomovich 
4. Non-Contradiction of Protective Estimates of Certain 
Ineffective Sets. Uspekhi Matematicheskikh Nauk lo:l (63) 
(1955), 155-158 
7. Non-Contradiction of the Projectiveness of Certain 

191 



Remarkable Sets. 'Trudy 3-go Vsesoyuznogo matem« s"yezda, 
Vol. I, Moscow, (I-95Ö); 18^185 

Stupina, Ideya Bmitriyevna, •■  . ■' •; 
I; On Certain Properties of P-Operations. Izvesitya Akad. 
Nauk SSSR ser. matem. 21 (1957), 329-3^8 
2. On Certain Properties of A2 Operations, ibid» 21 
(1957), 579-591*- 

ütyazkhin, Nikolay Ivanovieh 
li On the Problem of the'Contribution of N» 3. Poretskiy to 
the'Development of11athematieal Logic. M. Vestnik un-ta, 
ser. ekon., fil. i praya: [Moscow,. Herald of ;iäio University, 
Series - for Economics/ Philosophy and, Law] 1,'(1956), . 
103-109 
2. On the Dialectric nature of Essence and the Method of 
Elimination of ParadoxeG-of Logis, ibid, h  (1957), 87-90 
3. On Different Views on Modern Mathematical Logic. 
Voprosy filozofii'3'(1957), 208-211 (together with D. G. 
Lakhuti) 

Tartakoyskiy,,.Vladimir Abramovich. 
26. Explicit Formulas for Local Expansions of Solutions of 
a System of Ordinary Differential Equations. Doklady 
Akad.Nauk SSSR 72 (1950), 633-636 

Taymanov, Asan Dabsovich       . ' ,' 
1. Ori Quasi-Components of Non-connoetiVe Sets. Matematicheskiy 
sbornik 25 (67) (19^9) 367-386 
2. On Rigid Basis of o-Operatiohs. Izvesity Akad. Nauk 

■'■ SSSR ser. mat, lb, <195Q>> ■ 1&3-1&8; 
3. On Quasi-Components of Non-connective Sets. Hi  Matema- 
ticheskiy sobrnik 30 (72) (1952), kG5-h8& " 

• 8;- On Closed Mappings. I. Matematicheskiy sbornik 36 
(78) (1955), 3^9-352 '■■*".,■■•;■. 

Trakhtenbrot, Boris Avraamovich 
i. Impossibility of an;:Algorithm for the Problem of 
Solvability on Finite Classes. Doklady Akad. 'Nauk SSSR 
70 (195O), 569-572:.'■'■' .  .,. '       .  ' 

•2. On Recursive Separability,'Doklady Akad. Nauk SSSR 88 
...  (1953) 953-956. 

3. Tabular Representation of Recursive Operators. Doklady 
Akad. Nauk SSSR 101 (1955), ^17-^20 
k.  Synthesis of Non-repeated Networks. Doklady Akad. ' 

•'•'•'  Nault SSSR IO5 (1955); 973-976 '.■"-■'. 
5. Investigation of Partially Recursive Operators by Means 
of the Theory of Bairo Space. Doklady -Akad. Nault SSSR 105 
(1955), 897-900, (together with A. V.; Kuznetsov) ' ' 

: 6.  Simulation '-of functions oh Finite Claüseü,'Penza, ■ 
Uchen. Zap. Ped. ia-te. [Penza, Scientific;Hotec of the 
Pedagogical Institute] 2-(1955), 6I-7S' :    ;' 
11. Determination of a Finite Set and Deductive Incomplete- 
ness of the Theory of Sets. Izvestiya Akad. Nauk SSSR ser. 
mat. 20 (1956), 569-582 

192 



12. .Signalling Functions and Tabular Operators, Penza, 
Uchen zap. Pad. in-ta [Penza, Scientific Notes,- Pedagogical 
Institute] h  (1956), 75-67 
1J. Concerning Operators that are Realised in logical 
Networks. Doklady Akad», Nauk SSSR 112 (1957),'1005-1007 

Tseytin, Grigoriy Samuilovich 
1. On the CaUöhy Theoren in Constructive Analysis. 
Uspekhi Matematicheskikh Nauk 10:4 {66)   (1955); 207-209 
2. Concerning the Problem of Recognition of Properties of 
Associative Calculi, Doklady Akad. Nauk- SSSR 107\-tf ; 

(I956) 209-212' 
3* Associative Calculus with Unsolvable Problem of 
Equivalence. Doklady Akad. Nauk SSSR IO7 (1956), 370-371 
5. Theorem of Included Segments, the Cauchy Theorem, and 
the Rolle Theorem in Constructive Analysis. Trudy 3-go 
Vsesoyuznogo.matem. s"yezda, Vol. I, Moscow (1956), 186-I87 
7. Uniform Recursiveness of Algorithmic Operators on General- 
Recursive Functions and Canonical Representation for 
Constructive Functions of Real Argument. Trudy 3-go 
Vsesoyuznogo matem. s"yezda, Vol. I, Moscow (1956), 188-189 

Tsetlin, Michail L'Vovich 
3. Application of Matrix Calculus to the Synthesis of 
Rayleigh Contact Circuits. .Doklady Akad. Nauk SSSR 86 
(1952), 525-528 

Uspenskiy Vladimir Andreyevich 
3. On the Concept of Algorithmic Reducibility. Uspekhi 
Matematicheskikh Nauk 8:k  (1956) (1953)* 176 
5. The Goedel Theorem and the Theory of Algorithm. Doklady 

■Akad. Nauk SSSR 91 (1953)* 737-7^0 
6. On Computable Operations. Doklady Akad. Nauk SSSR 103 

(1955), 773-776 
7. Systems of Donunerable Sets and their Numbering. 
Doklady Akad. Nauk 33SR 105 (1955) 1155-H53 
8. Computable Operations, Computable Operators, and 
Constructively Continuous Functions. Trudy 3-go Vsesoyunogo 
matem. s"yezda, Vol. I, Moscow (1956), 1Ö5 
9. The Concept of the Program and Computable Operators, 
ibid. Vol. I, Moscow (1956), I86 
10. On Algorithmic Reducibility. ibid. Vol. II, Moscow 
(1956), 66-69 
12. Computable Operations and the Concept of the Program. 
Uspekhi Matematicheskikh Nauk 11:4 (70) (1956), 172-176 
13. Contribution to the Theorem of Uniform Continuity. 
Uspekhi Matematicheskikh Nauk 12:1 (73) 99-1^2 
Ik, A Few Comments on Denumerable Sets. Zeitschr, fur 
Math. Logik und Grundlagen der Mathematik. 3:2 (1957)* 
157-170 

193 



r 
15. -Concerning the Definition of the Case after A. N. 
Kolmogorov. Byull. ob"yedineniya po problemam mash, perevoda 

5 (1957). 11-18 
16. On the Definition of aPart of Speech in Set-Theoretical 
Language System, ibid. .5 (1957), 22-26 

Vorob'yev, Nikolay Nikolayevich 
4. Constructive Calculus of Predictions with Strong-Negation 
Doklady Akad. Nauk SSSR 58 (19V7), 1877-1879 
5. The Problem of Derivability in the Constructive;Calculus 
of Predictions with Strong Negation, ibid. 85 (195^,:,V 

689-692 ' :??^'. 
Yablonskiy, Sergey Vsevolpdovich 

1. On" Converging Sequences of Continuous Functions. 
M. Vestnik un-ta [Moscow, Herald of the University] 9 

0350), 15-29.  . '    .    . 
Jv On the Superposition of Functions of Algebraic Logic, 
Matematicheskiy sobrnik JO (72) (1952); 329-3^8 
5. Realization.of a Linear Function in Class of ut-Networks 
Doklady Akad. Nauk SSSR 9k  (195M, 8O5-806 
6. Functional Constructions in Multiple-\alued Logies. . 
Trudy 3-go Vsesoyuznoco matem. s"yezda, Vol. II, Moscow 

(1956) > 71-7? .,   ■■■    ; ■ 
7. On Functional Completeness in Three-Valued Calculus. 
Doklady Akad. Nauk 8S3R 95 (195*0/ H53-H55... . 
9. On One Family of Classes of Functions of Algebraic Logic,. 
Admitting of a Simple network Realization. . Trudy 3-go 
Vsesoyuznogo. mate;;:. suyezda,.'.Vol. II, Moscow (1956)., 1^9 
■10...On Tests for Electric Networks. Uspekhi Matematicheskikh 
Nauk 10:k (66)   (1956), 182-194 (together with I. S. Chegis) 

: 11. On Classes of Functions of Algebraic Logics, Admitting of 
Simple Circuit Realisation. Uspekhi Matematicheskihh Nauk 
12:6 (78) (1957), 189-196 ■:       ,   • 

Yanovskaya, Sof'ya Aleksandrovna_•■ 
29. From the History of the Axiomatic Method. Trudy 3-go 
-Vsesoyuznogo matem. s"yezda, Vol. II, Moscow (1956), 105 

Yesenin-Vol'pin, Aleksandr Sergeyevich 
3-. Non^-Provability of the Suslin Hypothesis without the.Aid of 
the Axiom of Choice in the System-of Bernays-Mostowskl 
Axioms. Doklady Akad. Nauk SSSR (195^), 9-12 . , 
k.  Proof of Non-Contradiction of Classical Arithmetic with 

. the Aid of Induction to EQ  (After Schutte). Appendix VII to 
the book by S. C. .Kleene ^Introduction to Meta-Methematics" 
(Rus.. Transl.) Moscow (1957;); 

Zaslavskiy, Igor' Dmitrievich 
3, Refutation of Certain Theorems of Classical Analysis 
in Constructive .Analysis..Uspekhi Matematicheskikh Nauk 
10:M66) (1955), 209-210 

19^ 



5* Certain Features of Constructive Functions of Real Variables 
Compared with the Classical Ones. Trudy 3-go Vsesoyuznogo 
matem. s"yezda [Works of the Third All-Union Mathematical 
Congress] Vol. I,  Moscow (1958), l8l-l82 
6; On Constructive Dedekind Cuts, ibid. Vol. I. Moscow 
(I956), 182-183 

Zynov'yev, A. A. 
I* Broadening the Topics of Logical Research; oh the tforkä of 
the Seininar on Logic at the Institute of Philosophy Academy 
of Sconces. Voprosy Filozofii [Problems of Philosophy] 
3, {1951),  211-215 

Zykov, Aleksändr Aleksandrovich 
2. Problem of Spectruu in the Broadened Calculus of Predicates. 
Izvesitya Akad. Nauk SSSR, ser. mat. 17 (1953), 63-76 

Shegalkin, Ivan Ivanovich 
2. Arithmetization of Symbolic Logic, Katonaticheskiy 
sbornik [Mathematics Collection], 35; (1928), 3H-378 
8, On the Problem of Solvability, ibid. 6 (W) (1939), 
185-198 

Zhyravlev, Yuriy Ivanovich 
2. On the Separability of Subnets of the Vertices cf an 
n-Dimensional Unit Cube, Doklady Akad, Nauk SSSR, 113 
(1957), 26^-267 

END 

1107 195 


